MODELLING GROUP

Local Model Validation Report – Level Crossing Study

MG0172 Level Crossing study

Nicolas Contentin

11 August 2022

NETWORK RAIL

DOCUMENT CONTROL ISSUE SHEET

Project & document details

Project name	Level Crossing study	
Project number	MG0172	
Document title	Local Model Validation Report – Level Crossing Study	
Document reference	Technical\Reports\LMVR	

Document history

Issue	Status	Reason for issue	Issued to
1	DRAFT	Issued to NR for comments	Network Rail
2	DRAFT	Issued to NR for comments	Network Rail
3	FINAL	Issued to NR	Network Rail

Issue control

Issue	Date	Author	Contributors	Approved	Date
1	31/08/2021	NC	NC	DB	31/08/2021
2	05/05/2022	NC	NC	DB	05/05/2022
3	11/08/2022	NC	NC	DB	11/08/2022

CONTENTS

1	INTRODUCTION	7
	1.1 Introduction	7
	1.2 Study Extents	7
	1.3 Model setup	7
	1.4 Model guidelines	7
2	MILTON FEN VISSIM MODEL	8
	2.1 Model Extents & Survey Locations	8
	Figure 2.1: Model Extents – Milton Fen	8
	Figure 2.2: Proposed Survey Locations – Milton Fen	8
	2.2 Model Time Periods & Demands	8
	Table 2.1: AM Peak Flow – Milton Fen	9
	Table 2.2: PM Peak Flow – Milton Fen	9
	2.3 Model Calibration – Flows	9
	Table 2.3: Flow Calibration – AM and PM Peak – Milton Fe	n9
	2.4 Model Validation – Flows	9
	Table 2.4: Flow Validation – AM and PM Peak – Milton Fen	10
	2.5 Model Validation – Barrier Down Time	10
	Table 2.5: Barrier Down Time – Milton Fen	10
	2.6 Model Validation – Queue Lengths	11
	Table 2.6: Queue Lengths – AM Peak – Milton Fen	11
	Table 2.7: Queue Lengths – PM Peak – Milton Fen	11
3	WATERBEACH VISSIM MODEL	12
	3.1 Model Extents & Survey Locations	12
	Figure 3.1: Model Extents – Waterbeach	12
	Figure 3.2: Proposed Survey Locations – Waterbeach	12
	3.2 Model Time Periods & Demands	12
	Table 3.1: AM Peak Flow – Waterbeach	13
	Table 3.2: PM Peak Flow – Waterbeach	13
	3.3 Model Specifics & Site Observations	13
	Figure 3.3: On Street Parking Location	13
	Figure 3.4: Traffic Holding Position Map	14
	3.4 Model Calibration – Flows	14
	Table 3.3: Flow Calibration – AM and PM Peak – Waterbea	ch14
	3.5 Model Validation – Flows	15
	Table 3.4: Flow Validation – AM and PM Peak – Waterbead	ch 15
	3.6 Model Validation – Barrier Down Time	15
	Table 3.5: Barrier Down time - Waterbeach	15
	3.7 Model Validation – Queue Lengths	16
	Table 3.6: Queue Lengths – AM Peak – Waterbeach	16

	Table 3.7: Queue Lengths – PM Peak – Waterbeach	16
	3.8 Model Validation – Journey Times	16
	Figure 3.5: Journey time Map – Waterbeach	17
	Table 3.8: Journey times – AM and PM Peak – Waterbeach	17
4	DIMMOCKS COTE VISSIM MODEL	18
	4.1 Model Extents & Survey Locations	18
	Figure 4.1: Model Extents – Dimmocks Cote	18
	Figure 4.2: Proposed Survey Locations – Dimmocks Cote	18
	4.2 Model Time Periods & Demands	18
	Table 4.1: AM Peak Flow – Waterbeach	19
	Table 4.2: PM Peak Flow - Waterbeach	19
	4.3 Model Calibration – Flows	19
	Table 4.3: FLow Calibration - AM and PM Peak – Dimmocks Cote	19
	4.4 Model Validation – Flows	20
	Table 4.4: FLow Validation – AM and PM Peak – Dimmocks Cote	20
	4.5 Model Validation – Barrier Down Time	20
	Table 4.5: Barrier Down time – Dimmocks Cote	20
	4.6 Model Validation – Queue Lengths	21
	Table 4.6: Queue Lengths – AM Peak – Dimmocks Cote	21
	Table 4.7: Queue Lengths – PM Peak – Dimmocks Cote	21
5	CROXTON VISSIM MODEL	22
	5.1 Model Extents & Survey Locations	22
	Figure 5.1: Model Extents – Croxton	22
	Figure 5.2: Proposed Survey Locations – Croxton	22
	5.2 Model Time Periods & Demands	22
	Table 5.1: AM Peak Flow – Croxton	23
	Table 5.2: PM Peak Flow - Croxton	23
	5.3 Model Calibration – Flows	23
	Table 5.3: flow Calibration – AM and PM Peak – Croxton	23
	5.4 Model Validation – Flows	24
	Table 5.4: flow Validation – AM and PM Peak – Croxton	24
	5.5 Model Validation – Barrier Down Time	24
	Table 5.5: Barrier Down time - Croxton	24
	5.6 Model Validation – Queue Lengths	25
	Table 5.6: Queue Lengths – AM Peak – Croxton	25
	Table 5.7: Queue Lengths – PM Peak – Croxton	25
6	SIX MILE BOTTOM VISSIM MODEL	26
	6.1 Model Extents & Survey Locations	26
	Figure 6.1: Model Extents – Six Mile Bottom	26
	Figure 6.2: Proposed Survey Locations – Six Mile Bottom	26
	6.2 Model Time Periods & Demands	26

	Table 6.1: AM Peak Flow – Six Mile Bottom	27
	Table 6.2: PM Peak Flow – Six Mile Bottom	27
	6.3 Model Calibration – Flows	27
	Table 6.3: Flow Calibration – AM and PM Peak – Six Mile Bottom	27
	6.4 Model Validation – Flows	28
	Table 6.4: Flow Validation – AM and PM Peak – Six Mile Bottom	28
	6.5 Model Validation – Barrier Down Time	28
	Table 6.5: Barrier Down time - Six Mile Bottom	28
	6.6 Model Validation – Queue Lengths	28
	Table 6.6: Queue Lengths– AM Peak – Six Mile Bottom	29
	Table 6.7: Queue Lengths– PM Peak – Six Mile Bottom	29
7	DULLINGHAM VISSIM MODEL	30
	7.1 Model Extents & Survey Locations	30
	Figure 7.1: Model Extents – Dullingham	30
	Figure 7.2: Proposed Survey Locations – Dullingham	30
	7.2 Model Time Periods & Demands	30
	Table 7.1: AM Peak Flow – Dullingham	31
	Table 7.2: PM Peak Flow – Dullingham	31
	7.3 Model Calibration – Flows	31
	Table 7.3: flow Calibration – AM and PM Peak – Dullingham	31
	7.4 Model Validation – Flows	32
	Table 7.4: Flow Validation – AM and PM Peak – Dullingham	32
	Table 7.5: Barrier Down time - Dullingham	32
	Table 7.6: Queue Lengths – AM Peak – Dullingham	33
	Table 7.7: Queue Lengths – PM Peak – Dullingham	33
8	MELDRETH VISSIM MODEL	34
	8.1 Model Extents & Survey Locations	34
	Figure 8.1: Model Extents - Meldreth	34
	Figure 8.2: Proposed Survey Locations - Meldreth	34
	8.2 Model Time Periods & Demands	34
	Table 8.1: AM Peak Flow – Meldreth	35
	Table 8.2: PM Peak Flow – Meldreth	35
	8.3 Model Calibration – Flows	35
	Table 8.3: flow Calibration – AM and PM Peak – Meldreth	35
	8.4 Model Validation – Flows	36
	Table 8.4: flow Validation – AM and PM Peak – Meldreth	36
	8.5 Model Validation – Barrier Down Time	36
	Table 8.5: Barrier Down time – Meldreth	36
	Table 8.6: Barrier Down time – Shepreth	37
	8.6 Model Validation – Queue Lengths	37
	Table 8.7: Queue Lengths – AM Peak – MELDRETH	37

	Table	e 8.8: Queue Lengths – PM Peak – MELDRETH	38
	8.7	Model Validation – Journey Times	38
	Figur	re 8.3: Journey Time Map – Meldreth	38
	Table	e 8.9: Journey times – AM and PM PEak – Meldreth	38
9	CON	CLUSION	40

APPENDICES

NO TABLE OF CONTENTS ENTRIES FOUND.

1 INTRODUCTION

1.1 Introduction

1.1.1 Modelling Group, in partnership with Tracsis Traffic Data Ltd have been appointed by Network Rail to analyse traffic and congestion implications of upgrading 7 level crossings to MCB-OD2 / MCB-CCTV type operation, with a view to understanding the impacts the upgrades will have on the local communities and the wider transport network.

1.2 Study Extents

- 1.2.1 The modelling study involves the assessment of 7 level crossings within Cambridgeshire and Norfolk. These include:
 - Milton Fen, Fen Road, CB24 6AF. Ordinance Survey grid reference TL 484 623.
 - Waterbeach, Clayhithe Road, CB25 9HS. Ordinance Survey grid reference TL 500 649
 - Dimmocks Cote, Newmarket Road, CB6 3LJ. Ordinance Survey grid reference TL 526 730
 - Croxton, A1075, IP24 2RQ. Ordinance Survey grid reference TL 902 867
 - Six Mile Bottom, London Road, CB8 0UJ, Ordinance Survey grid reference TL 576 567
 - Dullingham, Station Road, CB8 9UT. Ordinance Survey grid reference TL 618 585
 - Meldreth, Meldreth Road, SG8 6XA. Ordinance Survey grid reference TL 388 477

1.3 Model setup

- 1.3.1 A microsimulation model for each of these level crossings has been developed using VISSIM 2021 SP09.
- 1.3.2 The following vehicle compositions have been used for all models:
 - Lights (Cars + Light Goods Vehicles (LGVs))
 - Heavies (Medium Class Vehicles (MGVs) + Heavy Goods Vehicles (HGVs))
 - Cyclists (PCLs)
- 1.3.3 The model has been calibrated against manual classified count (MCCs) data and validated against automatic traffic count (ATC) data collected in 2021, using the GEH statistic criteria.

1.4 Model guidelines

- 1.4.1 The model has been developed to meet the following VISSIM modelling guidelines:
 - DfT's TAG Unit 3.1 Guidelines Highway Assignment Modelling
 - TfL, Traffic Modelling Guidelines TfL Traffic Manager and Network Performance Best Practice, Version 3.0

introduction Page 7 of 41

2 MILTON FEN VISSIM MODEL

2.1 Model Extents & Survey Locations

2.1.1 The model extents for the Milton Fen VISSIM model are shown in Figure 2.1.

FIGURE 2.1: MODEL EXTENTS - MILTON FEN

2.1.2 The traffic survey data that has been captured is shown in Figure 2.2.

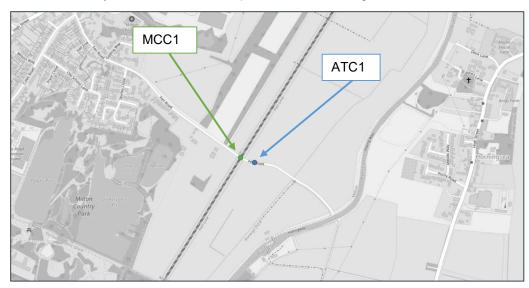


FIGURE 2.2: PROPOSED SURVEY LOCATIONS - MILTON FEN

2.2 Model Time Periods & Demands

- 2.2.1 The peak periods have been calculated using the sum of all entry points based on the MCCs. The following peak periods have been identified for the Milton Fen model:
 - AM Peak 1115-1215hrs
 - PM Peak 1630-1730hrs

Milton Fen VISSIM Model Page 8 of 41

2.2.2 A 15-minute warm-up and cool-down period has also been applied to the model.

Census data has been captured on Tuesday 6th of July 2021 and is summarised in Table 2.1 and Table 2.2.

Surveyed				
M∨t #	Lights	Heavies	Cyclists	Total
Westbound	8	0	2	10
Eastbound	3	0	3	6

TABLE 2.1: AM PEAK FLOW - MILTON FEN

Surveyed				
Mvt # Lights Heavies Cyclists Total				
Westbound	3	0	2	5
Eastbound	8	0	1	9

TABLE 2.2: PM PEAK FLOW - MILTON FEN

2.2.3 A total of 21 and 10 pedestrians were observed crossing the level crossing during the AM and PM peak periods respectively.

2.3 Model Calibration – Flows

2.3.1 The model has been calibrated against the turning count as shown in Table 2.3.

Calibration	
Total number of counts considered	2
VISSIM model counts with GEH <3	2
% of VISSIM counts with GEH <3	100%
VISSIM model counts with GEH <5	2
% of VISSIM counts with GEH <5	100%
VISSIM model counts with GEH <10	2
% of VISSIM counts with GEH <10	100%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	2
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100%

TABLE 2.3: FLOW CALIBRATION - AM AND PM PEAK - MILTON FEN

2.4 Model Validation – Flows

2.4.1 The model has been validated against the ATC data as shown in Table 2.4.

Validation		
Total number of counts considered	2	
VISSIM model counts with GEH <3	2	
% of VISSIM counts with GEH <3	100%	

Milton Fen VISSIM Model Page 9 of 41

Validation	
VISSIM model counts with GEH <5	2
% of VISSIM counts with GEH <5	100%
VISSIM model counts with GEH <10	2
% of VISSIM counts with GEH <10	100%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	2
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100%

TABLE 2.4: FLOW VALIDATION - AM AND PM PEAK - MILTON FEN

2.4.2 Flow consistency checks have also been undertaken between the observed and modelled values for the crossing within the study area for light and heavy vehicles. The results show a GEH <3 for at least 85% of cases in all peaks, as recommended by the modelling guidelines.</p>

2.5 Model Validation – Barrier Down Time

2.5.1 The barrier down time was also captured as part of this study and was used to set up the model as shown in Table 2.5.

	AM			PM			
	Number of call			Number of call	mber of call		
Surveyed	Modelled	Diff.	Surveyed	Modelled	Diff.		
6	6	0	7	7	0		
Barrier down time (s)			Bar	rier down time	(s)		
Surveyed	Modelled	Diff.	Surveyed	Modelled	Diff.		
38	38	0	22	22	0		
21	21	0	27	27	0		
33	33	0	25	25	0		
24	24	0	21	21	0		
20	20	0	24	24	0		
29	29	0	31	31	0		
-	-	=	26	28	2		

TABLE 2.5: BARRIER DOWN TIME - MILTON FEN

2.5.2 From the results above, it can be seen that the model validates well with the observed data in term of the barrier down time and number of activations.

Milton Fen VISSIM Model Page 10 of 41

2.6 Model Validation – Queue Lengths

2.6.1 The queue lengths in the model have also been compared with the observed data as shown in Table 2.6 and Table 2.7.

Max Queue Length (Vehicle) AM Peak								
		WB		EB				
Call #	Surveyed	Modelled	Diff.	Surveyed	Modelled	Diff.		
1	0	0	0	0	0	0		
2	0	0	0	0	0	0		
3	0	0	0	0	0	0		
4	0	0	0	0	0	0		
5	0	0	0	0	0	0		
6	0	0	0	0	0	0		
Avg	0	0	0	0	0	0		

TABLE 2.6: QUEUE LENGTHS - AM PEAK - MILTON FEN

Max Queue Length (Vehicle) PM Peak								
		WB			EB			
Call #	Surveyed	Modelled	Diff.	Surveyed	Modelled	Diff.		
1	0	0	0	0	0	0		
2	0	0	0	0	0	0		
3	0	0	0	0	0	0		
4	0	0	0	0	0	0		
5	0	0	0	0	0	0		
6	0	0	0	0	0	0		
7	0	0	0	0	0	0		
Avg	0	0	0	0	0	0		

TABLE 2.7: QUEUE LENGTHS - PM PEAK - MILTON FEN

2.6.2 From the results above, it can be seen that the queue lengths in the model are similar to those observed.

Milton Fen VISSIM Model Page 11 of 41

3 WATERBEACH VISSIM MODEL

3.1 Model Extents & Survey Locations

3.1.1 The model extents for the Waterbeach VISSIM model are shown in Figure 3.1.

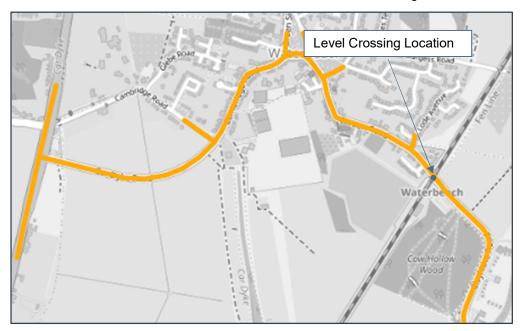


FIGURE 3.1: MODEL EXTENTS - WATERBEACH

3.1.2 The traffic survey data that has been captured is shown in Figure 3.2.

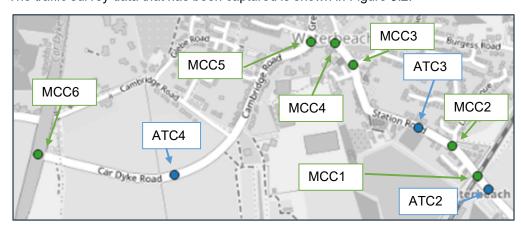


FIGURE 3.2: PROPOSED SURVEY LOCATIONS - WATERBEACH

3.2 Model Time Periods & Demands

- 3.2.1 The peak periods have been calculated using the sum of all entry points based on the MCCs. The following peak periods have been identified for the Waterbeach model:
 - AM Peak 0800-0900hrs
 - PM Peak 1630-1730hrs
- 3.2.2 A 15-minute warm-up and cool-down period has also been applied to the model.

Waterbeach VISSIM Model

3.2.3 Census data has been captured on Tuesday 29th of March 2022 and is summarised in Table 3.1 and Table 3.2.

225	2	227

TABLE 3.1: AM PEAK FLOW - WATERBEACH

118	2	120

TABLE 3.2: PM PEAK FLOW - WATERBEACH

3.2.4 A total of 43 and 26 pedestrians uses the level crossing during the AM and PM peak period. This is mainly due to the access of the platforms which are located on each side of the level crossing.

3.3 Model Specifics & Site Observations

3.3.1 On street parking was observed on Station Road, with the sections highlighted in Figure 3.3 showing the main locations.

FIGURE 3.3: ON STREET PARKING LOCATION

3.3.2 These sections have been modelled in VISSIM using invisible signals and a demand dependent signal logic profile, to provide an accurate representation of the give way behaviour. The model has also been setup to hold traffic where double yellow line sections are located as highlighted in Figure 3.4.

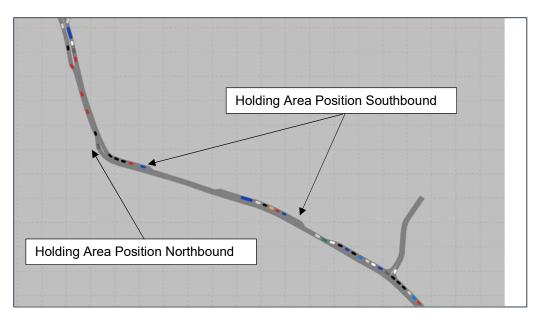


FIGURE 3.4: TRAFFIC HOLDING POSITION MAP

3.4 Model Calibration – Flows

3.4.1 The model has been calibrated against the turning count as shown in Table 3.3.

Calibration	
Total number of counts considered	42
VISSIM model counts with GEH <3	41
% of VISSIM counts with GEH <3	97.62%
VISSIM model counts with GEH <5	42
% of VISSIM counts with GEH <5	100%
VISSIM model counts with GEH <10	42
% of VISSIM counts with GEH <10	100%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	42
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100%

TABLE 3.3: FLOW CALIBRATION - AM AND PM PEAK - WATERBEACH

3.5 Model Validation – Flows

3.5.1 The model has been validated against the ATC data as shown in Table 3.4.

Validation	
Total number of counts considered	42
VISSIM model counts with GEH <3	42
% of VISSIM counts with GEH <3	100%
VISSIM model counts with GEH <5	42
% of VISSIM counts with GEH <5	100%
VISSIM model counts with GEH <10	42
% of VISSIM counts with GEH <10	100%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	42
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100%

TABLE 3.4: FLOW VALIDATION - AM AND PM PEAK - WATERBEACH

3.5.2 Flow consistency has been checked between the observed and modelled values for the crossing within the study area for light and heavy vehicles. The results show a GEH <3 for at least 85% of cases in all peaks, as recommended by the modelling guidelines.

3.6 Model Validation – Barrier Down Time

3.6.1 The barrier down time was also captured as part of this study and was used to set up the model as shown in Table 3.5.

	AM			PM		
	Number of call		Number of call			
Surveyed	Modelled	Diff.	Surveyed	Modelled	Diff.	
8	8	0	8	8	0	
Barrier down time (s)			Bar	rier down time	: (s)	
Surveyed	Modelled	Diff.	Surveyed	Modelled	Diff.	
77	77	0	78	78	0	
9	9	0	36	36	0	
44	44	0	8	8	0	
53	53	0	54	54	0	
23	23	0	41	41	0	
76	76	0	26	26	0	
56	56	0	49	49	0	
41	41	0	49	49	0	

TABLE 3.5: BARRIER DOWN TIME - WATERBEACH

3.6.2 From the results above, it can be seen that the model validates well with the observed data in term of the barrier down time and number of activations.

3.7 Model Validation – Queue Lengths

3.7.1 The queue lengths in the model have also been compared with the observed data as shown in Table 2.6 and Table 3.7.

	Max Queue Length (Vehicle) AM Peak								
		WB		EB					
Call #	Surveyed	Modelled	Diff.	Surveyed	Modelled	Diff.			
1	0	1	1	15	5	-10			
2	0	0	0	2	0	-2			
3	0	1	1	24	5	-19			
4	1	0	-1	12	0	-12			
5	2	6	4	2	14	12			
6	13	0	-13	18	0	-18			
7	12	2	-10	6	7	1			
8	16	0	-16	8	0	-8			
Avg	6	1	-4	11	4	-7			

TABLE 3.6: QUEUE LENGTHS - AM PEAK - WATERBEACH

	Max Queue Length (Vehicle) PM Peak								
		WB			EB				
Call #	Surveyed	Modelled	Diff.	Surveyed	Modelled	Diff.			
1	7	4	-3	0	2	2			
2	11	0	-11	8	0	-8			
3	14	13	-1	8	6	-2			
4	3	0	-3	2	0	-2			
5	1	11	10	2	6	4			
6	13	0	-13	10	0	-10			
7	11	4	-7	11	4	-7			
Avg	9	5	-4	6	3	-3			

TABLE 3.7: QUEUE LENGTHS - PM PEAK - WATERBEACH

3.7.2 From the results above, it can be seen that the queue lengths in the model are similar to those observed.

3.8 Model Validation – Journey Times

3.8.1 The journey times in the model have also been compared, using the journey time section as shown in Figure 3.5.

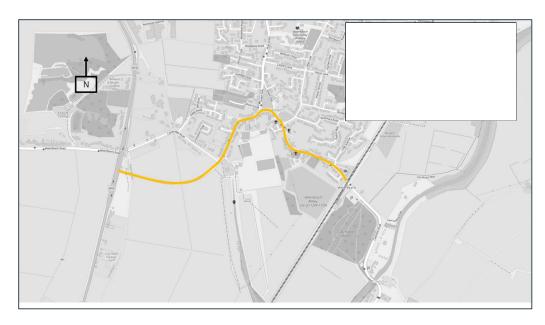


FIGURE 3.5: JOURNEY TIME MAP - WATERBEACH

	AM JT(s)				PM JT(s)			
Section	Observed	Modelled	Diff.	% Diff.	Observed	Modelled	Diff.	% Diff.
EB Section	147	125	-21	-15%	146	130	-15	-10%
WB Section	154	132	-21	-14%	128	132	3	3%

TABLE 3.8: JOURNEY TIMES - AM AND PM PEAK - WATERBEACH

3.8.2 From the results above, it can be seen that the modelled journey times are not within 15% of the observed times However, they are within 60s and are considered representative against DfT's TAG Unit 3.1 guidance.

4 DIMMOCKS COTE VISSIM MODEL

4.1 Model Extents & Survey Locations

4.1.1 The model extents for the Dimmocks Cote VISSIM model are shown in Figure 4.1.

FIGURE 4.1: MODEL EXTENTS - DIMMOCKS COTE

4.1.2 The traffic survey data that has been captured is shown in Figure 4.2.

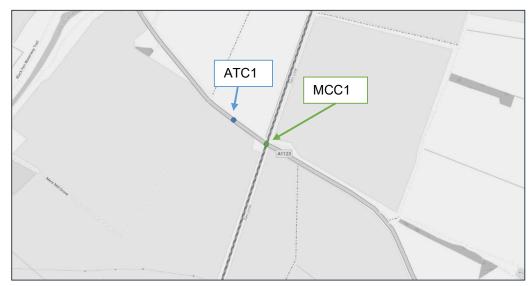


FIGURE 4.2: PROPOSED SURVEY LOCATIONS - DIMMOCKS COTE

4.2 Model Time Periods & Demands

- 4.2.1 The peak periods have been calculated using the sum of all entry points based on the MCCs. The following peak periods have been identified for the Dimmocks Cote model:
 - AM Peak 0715-0815hrs
 - PM Peak 1630-1730hrs

- 4.2.2 A 15-minute warm-up and cool-down period has also been applied to the model.
- 4.2.3 Census data have been captured on Tuesday 6th of July 2021 and have been summarised in Table 4.1 and Table 4.2.

Surveyed								
M∨t #	Lights Heavies Cyclists Total							
Westbound	210	11	0	221				
Eastbound	167	15	0	182				

TABLE 4.1: AM PEAK FLOW - WATERBEACH

Surveyed							
Mvt # Lights Heavies Cyclists Total							
Westbound	197	6	1	204			
Eastbound	160	4	1	165			

TABLE 4.2: PM PEAK FLOW - WATERBEACH

4.2.4 No pedestrian was observed using the level crossing during both peak periods.

4.3 Model Calibration – Flows

4.3.1 The model has been calibrated against the turning count as shown in Table 4.3.

Calibration	
Total number of counts considered	2
VISSIM model counts with GEH <3	2
% of VISSIM counts with GEH <3	100%
VISSIM model counts with GEH <5	2
% of VISSIM counts with GEH <5	100%
VISSIM model counts with GEH <10	2
% of VISSIM counts with GEH <10	100%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	2
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100%

TABLE 4.3: FLOW CALIBRATION - AM AND PM PEAK - DIMMOCKS COTE

4.4 Model Validation – Flows

4.4.1 The model has been validated against the ATC data as shown in Table 4.4.

Validation	
Total number of counts considered	2
VISSIM model counts with GEH <3	2
% of VISSIM counts with GEH <3	100%
VISSIM model counts with GEH <5	2
% of VISSIM counts with GEH <5	100%
VISSIM model counts with GEH <10	2
% of VISSIM counts with GEH <10	100%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	2
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100%

TABLE 4.4: FLOW VALIDATION - AM AND PM PEAK - DIMMOCKS COTE

4.4.2 Flow consistency has been checked between the observed and modelled values for the crossing within the study area for the light and heavy vehicles. The results show a GEH<3 for at least 85% of cases in all peaks, as recommended by the modelling guidelines.

4.5 Model Validation – Barrier Down Time

4.5.1 The barrier down time was also captured as part of this study and was used to set up the model as shown in Table 4.5.

	AM			PM	
Number of call			Number of call		
Surveyed	Modelled	Diff.	Surveyed	Modelled	Diff.
8	8	0	7	7	0
Bar	rier down time	(s)	Bar	rier down time	: (s)
Surveyed	Modelled	Diff.	Surveyed	Modelled	Diff.
31	31	0	47	47	0
24	24	0	23	23	0
31	31	0	33	33	0
22	22	0	24	24	0
23	23	0	29	29	0
20	20	0	33	33	0
33	33	0	23	23	0
22	22	0	-	-	-

TABLE 4.5: BARRIER DOWN TIME - DIMMOCKS COTE

4.5.2 From the results above, it can be seen that the model validates well with the observed data in term of the barrier down time and number of activations.

4.6 Model Validation – Queue Lengths

4.6.1 The queue lengths in the model have also been compared with the observed data as shown in Table 4.6 and Table 4.7.

Max Queue Length (Vehicle) AM Peak							
		WB			EB		
Call #	Surveyed	Modelled	Diff.	Surveyed	Modelled	Diff.	
1	3	3	0	1	1	0	
2	2	3	1	1	1	0	
3	0	2	2	2	1	-1	
4	2	2	0	0	1	1	
5	2	3	1	2	2	0	
6	7	2	-5	1	2	1	
7	1	1	0	3	2	-1	
8	2	2	0	2	2	0	
Avg	0	2	2	4	3	-1	

TABLE 4.6: QUEUE LENGTHS - AM PEAK - DIMMOCKS COTE

Max Queue Length (Vehicle) PM Peak							
		WB			EB		
Call #	Surveyed	Modelled	Diff.	Surveyed	Modelled	Diff.	
1	2	2	0	4	4	0	
2	0	2	2	6	2	-4	
3	4	2	-2	7	3	-4	
4	2	2	0	3	2	-1	
5	0	3	3	9	3	-6	
6	1	3	2	5	3	-2	
7	4	3	-1	2	2	0	
Avg	2	2	1	5	3	-2	

TABLE 4.7: QUEUE LENGTHS - PM PEAK - DIMMOCKS COTE

4.6.2 From the results above, it can be seen that the queue lengths in the model are similar to those observed.

5 CROXTON VISSIM MODEL

5.1 Model Extents & Survey Locations

5.1.1 The model extents for the Croxton VISSIM model are shown in Figure 5.1.

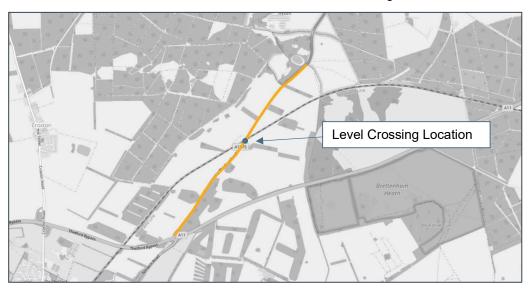


FIGURE 5.1: MODEL EXTENTS - CROXTON

5.1.2 The traffic survey data that has been captured is shown in Figure 5.2.

FIGURE 5.2: PROPOSED SURVEY LOCATIONS - CROXTON

5.2 Model Time Periods & Demands

- 5.2.1 The peak periods have been calculated using the sum of all entry points based on the MCCs. The following peak periods have been identified for the Croxton model:
 - AM Peak 0715-0815hrs
 - PM Peak 1645-1745hrs

Croxton VISSIM Model Page 22 of 41

- 5.2.2 A 15-minute warm-up and cool-down period has also been applied to the model.
- 5.2.3 Census data have been captured on Tuesday 6th of July 2021 and have been summarised in Table 5.1 and Table 5.2.

Surveyed						
Mvt # Lights Heavies Cyclists Total						
Westbound	317	10	0	327		
Eastbound	182	13	0	195		

TABLE 5.1: AM PEAK FLOW - CROXTON

Surveyed							
Mvt # Lights Heavies Cyclists Total							
Westbound	279	9	8	296			
Eastbound	181	2	2	185			

TABLE 5.2: PM PEAK FLOW - CROXTON

5.2.4 No pedestrian was observed using the level crossing during both peak periods.

5.3 Model Calibration – Flows

5.3.1 The model has been calibrated against the turning count as shown in Table 5.3.

Calibration	
Total number of counts considered	2
VISSIM model counts with GEH <3	2
% of VISSIM counts with GEH <3	100%
VISSIM model counts with GEH <5	2
% of VISSIM counts with GEH <5	100%
VISSIM model counts with GEH <10	2
% of VISSIM counts with GEH <10	100%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	2
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100%

TABLE 5.3: FLOW CALIBRATION - AM AND PM PEAK - CROXTON

Croxton VISSIM Model Page 23 of 41

5.4 Model Validation – Flows

5.4.1 The model has been validated against the ATC data as shown in Table 5.4.

Validation	
Total number of counts considered	2
VISSIM model counts with GEH <3	2
% of VISSIM counts with GEH <3	100%
VISSIM model counts with GEH <5	2
% of VISSIM counts with GEH <5	100%
VISSIM model counts with GEH <10	2
% of VISSIM counts with GEH <10	100%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	2
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100%

TABLE 5.4: FLOW VALIDATION - AM AND PM PEAK - CROXTON

5.4.2 Flow consistency has been checked between the observed and modelled values for the crossing within the study area for light and heavy vehicles. The results show a GEH <3 for at least 85% of cases in all peaks, as recommended by the modelling guidelines.

5.5 Model Validation – Barrier Down Time

5.5.1 The barrier down time was also captured as part of this study and was used to setup the model as shown in Table 5.5.

	АМ			PM			
	Number of call			Number of call			
Surveyed	Modelled	Diff.	Surveyed	Diff.			
3	3	0	2	2	0		
Bar	rier down time	(s)	Barrier down time (s)				
Surveyed	Modelled	Diff.	Surveyed	Modelled	Diff.		
96	96	0	45	45	0		
42	42	0	36	36	0		
48	48	0	-	-	-		

TABLE 5.5: BARRIER DOWN TIME - CROXTON

Croxton VISSIM Model Page 24 of 41

5.5.2 From the results, it can be seen that the model validates well with the observed data in term of the barrier down time and number of activations.

5.6 Model Validation – Queue Lengths

5.6.1 The queue lengths in the model have also been compared with the observed data as shown in Table 5.6 and Table 5.7.

Max Queue Length (Vehicle) AM Peak							
		NB			SB		
Call #	Surveyed	Modelled	Diff.	Surveyed	Modelled	Diff.	
1	7	13	6	9	7	-2	
2	1	6	5	3	1	-2	
3	1	6	5	3	1	-2	
Avg	3	8	5	5	3	-2	

TABLE 5.6: QUEUE LENGTHS - AM PEAK - CROXTON

Max Queue Length (Vehicle) PM Peak						
	NB SB				SB	
Call #	Surveyed	Modelled	Diff.	Surveyed	Modelled	Diff.
1	4	3	-1	2	5	3
2	1	3	2	7	4	-3
Avg	3	3	1	5	5	0

TABLE 5.7: QUEUE LENGTHS - PM PEAK - CROXTON

5.6.2 From the results above, it can be seen that the queue lengths in the model are similar to those observed.

Croxton VISSIM Model Page 25 of 41

6 SIX MILE BOTTOM VISSIM MODEL

6.1 Model Extents & Survey Locations

6.1.1 The model extents for the Six Mile Bottom VISSIM model are shown in Figure 6.1.

FIGURE 6.1: MODEL EXTENTS - SIX MILE BOTTOM

6.1.2 The traffic survey data that has been captured is shown in Figure 6.2.

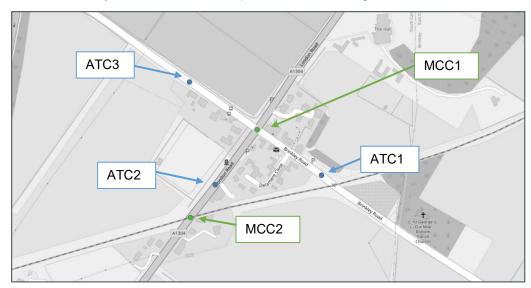


FIGURE 6.2: PROPOSED SURVEY LOCATIONS - SIX MILE BOTTOM

6.2 Model Time Periods & Demands

- 6.2.1 The peak periods have been calculated using the sum of all entry points based on the MCCs. The following peak periods have been identified for the Six Mile Bottom model:
 - AM Peak 0745-0845hrs
 - PM Peak 1530-1630hrs

6.1.3

- 6.2.2 A 15-minute warm-up and cool-down period has also been applied to the model.
- 6.2.3 Census data have been captured on Tuesday 6th of July 2021 and have been summarised in Table 6.1 and Table 6.2.

Surveyed					
M∨t #	Lights	Heavies	Cyclists	Total	
Westbound	355	11	1	367	
Eastbound	731	10	1	742	

TABLE 6.1: AM PEAK FLOW - SIX MILE BOTTOM

Surveyed				
M∨t #	Lights	Heavies	Cyclists	Total
Westbound	761	31	3	795
Eastbound	262	3	0	265

TABLE 6.2: PM PEAK FLOW - SIX MILE BOTTOM

6.2.4 3 pedestrians were observed to cross the level crossing during the AM peak only.

6.3 Model Calibration – Flows

6.3.1 The model has been calibrated against the turning count as shown in Table 6.3.

Calibration	
Total number of counts considered	2
VISSIM model counts with GEH <3	2
% of VISSIM counts with GEH <3	100%
VISSIM model counts with GEH <5	2
% of VISSIM counts with GEH <5	100%
VISSIM model counts with GEH <10	2
% of VISSIM counts with GEH <10	100%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	2
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100%

TABLE 6.3: FLOW CALIBRATION - AM AND PM PEAK - SIX MILE BOTTOM

6.4 Model Validation – Flows

6.4.1 The model has been validated against the ATC data as shown in Table 6.4.

Validation	
Total number of counts considered	2
VISSIM model counts with GEH <3	2
% of VISSIM counts with GEH <3	100%
VISSIM model counts with GEH <5	2
% of VISSIM counts with GEH <5	100%
VISSIM model counts with GEH <10	2
% of VISSIM counts with GEH <10	100%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	2
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100%

TABLE 6.4: FLOW VALIDATION - AM AND PM PEAK - SIX MILE BOTTOM

6.4.2 Flow consistency has been checked between the observed and modelled values for the crossing within the study area for the light and heavy vehicles. The results show a GEH <3 for at least 85% of cases in all peaks, as recommended by the modelling guidelines.

6.5 Model Validation – Barrier Down Time

6.5.1 The barrier down time was also captured as part of this study and was used to set up the model as shown in Table 6.5.

AM				PM	
Number of call			Number of call		
Surveyed	Modelled	Diff.	Surveyed	Modelled	Diff.
2	2	0	1	1	0
Bar	rier down time	(s)	Bar	rier down time	(s)
Bar Surveyed	rier down time Modelled	(s) Diff.	Bar Surveyed	rier down time Modelled	(s) Diff.
		• •			` '

TABLE 6.5: BARRIER DOWN TIME - SIX MILE BOTTOM

- 6.5.2 From the results above, it can be seen that the model validates well with the observed data in term of the barrier down time and number of activations.
- 6.5.3 The timings associated with the level crossing on Brinkley Road are identical to those used at the Six Mile Bottom crossing, due the same crossing type and close proximity.

6.6 Model Validation – Queue Lengths

6.6.1 The queue lengths in the model have also been compared with the observed data as shown in Table 6.6 and Table 6.7.

Max Queue Length (Vehicle) AM Peak						
		NB			SB	
Call #	Surveyed	Modelled	Diff.	Surveyed	Modelled	Diff.
1	2	5	3	16	16	0
2	4	6	2	22	18	-4
Avg	3	6	3	19	17	-2

TABLE 6.6: QUEUE LENGTHS- AM PEAK - SIX MILE BOTTOM

Max Queue Length (Vehicle) PM Peak						
	NB SB					
Call #	Surveyed	Modelled	Diff.	Surveyed	Modelled	Diff.
1	22	18	-4	6	4	-2
Avg	22	18	-4	6	4	-2

TABLE 6.7: QUEUE LENGTHS-PM PEAK - SIX MILE BOTTOM

6.6.2 From the results above, it can be seen that the queue lengths in the model are similar to those observed.

7 DULLINGHAM VISSIM MODEL

7.1 Model Extents & Survey Locations

7.1.1 The model extents for the Dullingham VISSIM model are shown in Figure 7.1.

FIGURE 7.1: MODEL EXTENTS - DULLINGHAM

7.1.2 The traffic survey data that has been captured is shown in Figure 7.2.

FIGURE 7.2: PROPOSED SURVEY LOCATIONS - DULLINGHAM

7.2 Model Time Periods & Demands

- 7.2.1 The peak periods have been calculated using the sum of all entry points based on the MCCs. The following peak periods have been identified for the Dullingham model:
 - AM Peak 0815-0915hrs
 - PM Peak 1600-1700hrs

- 7.2.2 A 15-minute warm-up and cool-down period has also been applied to the model.
- 7.2.3 Census data have been captured on Tuesday 6th of July 2021 and have been summarised in Table 7.1 and Table 7.2

Surveyed				
M∨t #	Lights	Heavies	Cyclists	Total
Westbound	29	3	0	32
Eastbound	20	1	0	21

TABLE 7.1: AM PEAK FLOW - DULLINGHAM

		Surveyed		
M∨t #	Lights	Heavies	Cyclists	Total
Westbound	23	0	0	23
Eastbound	16	1	0	17

TABLE 7.2: PM PEAK FLOW - DULLINGHAM

7.2.4 A maximum of 4 pedestrians were observed to cross the level crossing during the AM peak period.

7.3 Model Calibration – Flows

7.3.1 The model has been calibrated against the turning count as shown in Table 7.3.

Calibration	
Total number of counts considered	2
VISSIM model counts with GEH <3	2
% of VISSIM counts with GEH <3	100%
VISSIM model counts with GEH <5	2
% of VISSIM counts with GEH <5	100%
VISSIM model counts with GEH <10	2
% of VISSIM counts with GEH <10	100%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	2
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100%

TABLE 7.3: FLOW CALIBRATION - AM AND PM PEAK - DULLINGHAM

7.4 Model Validation – Flows

7.4.1 The model has also been validated against the ATC data as shown in Table 7.4.

Validation	
Total number of counts considered	2
VISSIM model counts with GEH <3	2
% of VISSIM counts with GEH <3	100%
VISSIM model counts with GEH <5	2
% of VISSIM counts with GEH <5	100%
VISSIM model counts with GEH <10	2
% of VISSIM counts with GEH <10	100%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	2
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100%

TABLE 7.4: FLOW VALIDATION - AM AND PM PEAK - DULLINGHAM

- 7.4.2 Flow consistency has been checked between the observed and modelled values for the crossing within the study area for the Lights and Heavies vehicles. The results show a GEH <3 for at least 85% of cases in all peaks, as recommended by the modelling guidelines.</p>
- 7.4.3 The barrier down time was also captured as part of this study and was used to setup the model as shown in Table 7.5.

	AM		PM			
Number of call				Number of call		
Surveyed	Modelled	Diff.	Surveyed	Modelled	Diff.	
1	1	0	2	2	0	
Barrier down time (s)						
Bar	rier down time	(s)	Bar	rier down time	(s)	
Bar Surveyed	rier down time Modelled	(s) Diff.	Bar Surveyed	rier down time Modelled	(s) Diff.	
			l		` ,	

TABLE 7.5: BARRIER DOWN TIME - DULLINGHAM

7.4.4 Overall, the model validates well with the observed data in term of the barrier down time and number of activations.

Max Queue Length (Vehicle) AM Peak									
		NB		SB					
Call #	Surveyed	Modelled	Diff.	Surveyed	Modelled	Diff.			
1	0	2	2	3	2	-1			
Avg	0	2	2	3	2	-1			

TABLE 7.6: QUEUE LENGTHS - AM PEAK - DULLINGHAM

Max Queue Length (Vehicle) PM Peak									
		NB		SB					
Call #	Surveyed	Modelled	Diff.	Surveyed	Modelled	Diff.			
1	0	1	1	4	6	2			
2	0	3	3	5	0	-5			
Avg	0	2	2	5	3	-2			

TABLE 7.7: QUEUE LENGTHS - PM PEAK - DULLINGHAM

7.4.5 From the results above, it can be seen that the queue lengths in the model are similar to those observed.

8 MELDRETH VISSIM MODEL

8.1 Model Extents & Survey Locations

8.1.1 The model extents for the Meldreth VISSIM model are shown in Figure 8.1.

FIGURE 8.1: MODEL EXTENTS - MELDRETH

8.1.2 The traffic survey data that has been captured is shown in Figure 8.2.

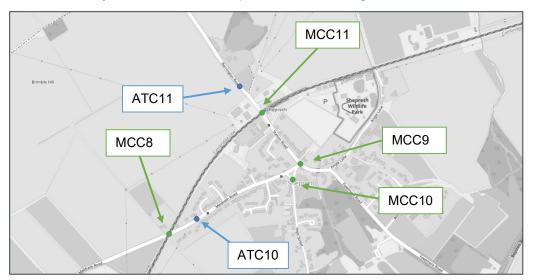


FIGURE 8.2: PROPOSED SURVEY LOCATIONS - MELDRETH

8.2 Model Time Periods & Demands

- 8.2.1 The peak periods have been calculated using the sum of all entry points based on the MCCs. The following peak periods have been identified for the Meldreth model:
 - AM Peak 0745-0845hrs
 - PM Peak 1645-1745hrs

Meldreth VISSIM Model Page 34 of 41

- 8.2.2 A 15-minute warm-up and cool-down period has also been applied to the model.
- 8.2.3 Two pedestrians have been captured crossing the level crossing during the AM peak period.
- 8.2.4 Census data have been captured on Tuesday 6th of July 2021 and have been summarised in Table 8.1 and Table 8.2.

Surveyed								
M∨t #	Lights	Heavies	Cyclists	Total				
Westbound	52	0	1	53				
Eastbound	57	0	0	57				

TABLE 8.1: AM PEAK FLOW - MELDRETH

Surveyed								
M∨t #	Lights	Heavies	Cyclists	Total				
Westbound	59	0	1	60				
Eastbound	51	1	2	54				

TABLE 8.2: PM PEAK FLOW - MELDRETH

8.2.5 A maximum of 4 pedestrians were observed to cross the level crossing during the AM peak period.

8.3 Model Calibration – Flows

8.3.1 The model has been calibrated against the turning count as shown in Table 8.3.

Calibration	
Total number of counts considered	2
VISSIM model counts with GEH <3	2
% of VISSIM counts with GEH <3	100%
VISSIM model counts with GEH <5	2
% of VISSIM counts with GEH <5	100%
VISSIM model counts with GEH <10	2
% of VISSIM counts with GEH <10	100%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	2
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100%

TABLE 8.3: FLOW CALIBRATION - AM AND PM PEAK - MELDRETH

Meldreth VISSIM Model Page 35 of 41

8.4 Model Validation – Flows

8.4.1 The model has been validated against the ATC data as shown in Table 8.4.

Validation	
Total number of counts considered	2
VISSIM model counts with GEH <3	2
% of VISSIM counts with GEH <3	100%
VISSIM model counts with GEH <5	2
% of VISSIM counts with GEH <5	100%
VISSIM model counts with GEH <10	2
% of VISSIM counts with GEH <10	100%
VISSIM model counts meeting WebTAG Unit 3.1 criteria	2
% of VISSIM counts meeting WebTAG Unit 3.1 flow criteria	100%

TABLE 8.4: FLOW VALIDATION - AM AND PM PEAK - MELDRETH

8.4.2 Flow consistency has been checked between the observed and modelled values for the crossing within the study area for the light and heavy vehicles. The results show a GEH<3 for at least 85% of cases in all peaks, as recommended by the modelling guidelines.

8.5 Model Validation – Barrier Down Time

8.5.1 The barrier down time was also captured as part of this study and was used to setup the model as shown in Table 8.5 and Table 8.6.

	АМ		PM			
	Number of call		Number of call			
Surveyed	Modelled	Diff.	Surveyed	Modelled	Diff.	
10	10	0	9	9	0	
Bar	rier down time	(s)	Bar	rier down time	(s)	
Surveyed	Modelled	Diff.	Surveyed	Modelled	Diff.	
43	43	0	77	77	0	
36	36	0	41	41	0	
36	36	0	43	43	0	
54	54	0	40	40	0	
102	102	0	65	65	0	
51	51	0	41	41	0	
40	40	0	37	37	0	
41	41	0	43	43	0	
36	36	0	62	62	0	
60	60	0	-	-	-	

TABLE 8.5: BARRIER DOWN TIME - MELDRETH

Meldreth VISSIM Model Page 36 of 41

	AM		PM			
	Number of call			Number of call		
Surveyed	Modelled	Diff.	Surveyed	Modelled	Diff.	
6	6	0	7	7	0	
Bar	rier down time	(s)	Bar	rier down time	: (s)	
Surveyed	Modelled	Diff.	Surveyed	Modelled	Diff.	
248	248	0	123	123	0	
209	209	0	218	218	0	
409	409	0	252	252	0	
152	152	0	110	110	0	
257	257	0	144	144	0	
322	322	0	155	155	0	
_	-	-	111	111	0	

TABLE 8.6: BARRIER DOWN TIME - SHEPRETH

8.5.2 From the results, it can be seen that the model validates well with the observed data in term of the barrier down time and number of activations.

8.6 Model Validation – Queue Lengths

8.6.1 The queue lengths in the model have also been compared with the observed data as shown in Table 8.7 and Table 8.8.

	Max Queue Length (Vehicle) AM Peak									
		WB			EB					
Call #	Surveyed	Modelled	Diff.	Surveyed	Modelled	Diff.				
1	1	0	-1	1	1	0				
2	1	0	-1	2	0	-2				
3	0	0	0	1	1	0				
4	1	0	-1	0	0	0				
5	2	1	-1	3	1	-2				
6	2	0	-2	2	0	-2				
7	1	0	-1	2	2	0				
8	1	0	-1	1	0	-1				
9	3	1	-2	0	4	4				
10	0	0	0	1	0	-1				
Avg	1	0	-1	1	1	0				

TABLE 8.7: QUEUE LENGTHS - AM PEAK - MELDRETH

Meldreth VISSIM Model Page 37 of 41

2	1	-1	1	2	1
2	1	-1	2	1	-1
2	1	-1		1	1
	1	1	2	1	-1
1	1	0		2	2

TABLE 8.8: QUEUE LENGTHS - PM PEAK - MELDRETH

8.6.2 From the results, it can be seen that the queue lengths in the model are similar to those observed.

8.7 Model Validation – Journey Times

8.7.1 The journey times in the model have also been compared, using the journey time section as shown in Figure 8.3.

FIGURE 8.3: JOURNEY TIME MAP - MELDRETH

	AM JT (s)				PM JT (s)			
Section	Surveyed	Modelled	Diff.	% Diff.	Surveyed	Modelled	Diff.	% Diff.
EB Section	47	46	0	-1%	55	46	-8	-15%
WB Section	44	44	0	-1%	40	43	4	9%

TABLE 8.9: JOURNEY TIMES - AM AND PM PEAK - MELDRETH

Meldreth VISSIM Model Page 38 of 41

8.7.2 From the results above, it can be seen that the modelled journey times correlate well with the observed times and are within the 15% criteria required within the DfT's TAG Unit 3.1 guidance.

Meldreth VISSIM Model Page 39 of 41

9 CONCLUSION

- 9.1.1 Modelling Group, in partnership with Tracsis Traffic Data Ltd have been appointed by Network Rail to analyse traffic and congestion implications of upgrading 7 level crossings to MCB-OD2 / MCB-CCTV type operation, with a view to understanding the impacts the upgrades will have on the local communities and the wider transport network.
- 9.1.2 This report has detailed the steps taken to develop base VISSIM models suitable for undertaking further testing at the following level crossing locations:
 - Milton Fen, Fen Road, CB24 6AF. Ordinance Survey grid reference TL 484 623.
 - Waterbeach, Clayhithe Road, CB25 9HS. Ordinance Survey grid reference TL 500 649
 - Dimmocks Cote, Newmarket Road, CB6 3LJ. Ordinance Survey grid reference TL 526 730
 - Croxton, A1075, IP24 2RQ. Ordinance Survey grid reference TL 902 867
 - Six Mile Bottom, London Road, CB8 0UJ, Ordinance Survey grid reference TL 576 567
 - Dullingham, Station Road, CB8 9UT. Ordinance Survey grid reference TL 618 585
 - Meldreth, Meldreth Road, SG8 6XA. Ordinance Survey grid reference TL 388 477
- 9.1.3 In summary, the calibration and validation results for each crossing demonstrate a suitable fit between modelled and surveyed data.
- 9.1.4 As such, the base models are considered an appropriate starting point in which to undertake any further network testing.

Conclusion Page 40 of 41

Modelling Group Ltd 11 Cofton Park Drive Birmingham B45 8DF

modelling.group

Registered in England & Wales: 12262604 Registered address: Crosby Court, 28 George Street, Birmingham B3 1QG