

September 2018



**Report for** – Rother Valley Railway Track Reinstatement between Northbridge Street and Junction Road Air Quality Statement – Level Crossings and Rolling Stock Emissions T2073.3 *Working Draft* 



# TEMPLE

# **Document version control** Version Date Author Reviewed by Reviewed and approved by 11/09/18 0.1 Alaric Lester **Richard Lane** Peter George **David Gillett** Report for: Rother Valley Railway Ltd. Main contributors: Alaric Lester, Marko Ristic-Smith, Richard Lane, Elena **Recio Palanca** Copy to: This report has been prepared by Temple Group Ltd with all reasonable care and diligence within the terms of the contract with the client. We disclaim any responsibility to the client and others in respect of any matters outside the scope of the contract. We accept no responsibility to third parties to whom this report, or any part, thereof is made available. Any such party relies upon the report at their own risk.

www.templegroup.co.uk

# TEMPLE

12

Rother Walley railway Track Reinstatement between Northbridge Street & Junction Road Air Quality Statement – Level Crossings & Rolling Stock Emissions Working Draft

## Contents

| 1.0 | Intro | duction                                                      | 1  |
|-----|-------|--------------------------------------------------------------|----|
| 2.0 | Base  | line Conditions                                              | 2  |
|     | 2.1   | Pollutants of Concern                                        | 2  |
|     | 2.2   | Receptors                                                    | 2  |
|     | 2.3   | Local Authority Review and Assessment Information            | 3  |
|     | 2.4   | Defra Background Mapping                                     | 4  |
|     | 2.5   | Overall Baseline                                             | 5  |
| 3.0 | Desk  | top Review of Heritage Railways                              | 6  |
|     | 3.1   | Heritage Railway EIAs                                        | 6  |
|     | 3.2   | Air Quality Management Areas                                 | 6  |
|     | 3.3   | Other Rail-related Air Quality Issues                        | 6  |
| 4.0 | Pote  | ntial Air Quality Impacts from Proposed Level Crossings      | 7  |
|     | 4.1   | Proposed Crossings                                           | 7  |
|     | 4.2   | Potential Emissions Impacts from Proposed Level Crossings    | 7  |
|     | 4.3   | Potential Air Quality Impacts of Proposed Level Crossings    | 8  |
| 5.0 | Pote  | ntial Impacts from Heritage Railway Steam and Diesel Engines | 10 |
|     | 5.1   | [Awaiting activity & fuel usage info from client]            | 10 |
| 6.0 | Cond  | clusions                                                     | 11 |

# **Appendices**

Appendix A – Method for Calculating Changes in Road Vehicle Emissions

## 1.0 Introduction

Rother Valley Railway Ltd (RVR) instructed Temple Group to look at air quality issues associated with the Transport and Works Act Order application for the Rother Valley Railway extension to Robertsbridge. It is understood that a number of stakeholders have objected to the proposals on the grounds of air quality impacts related to traffic queues at the proposed level crossings and general air quality impacts from diesel and steam emissions from locomotives.

This report considers the following:

- baseline air quality conditions;
- a desktop review previously-identified air quality issues associated with heritage railways;
- consideration of the potential impact of traffic queues on emissions and air quality at the three proposed level crossing associated with the extension; and
- consideration of the likely impacts on emissions and air quality from heritage railway diesel and steam engines associated with the extension.

## 2.0 Baseline Conditions

## 2.1 Pollutants of Concern

The pollutants of potential concern for the proposed extension are nitrogen dioxide (NO<sub>2</sub>), fine particulate matter ( $PM_{10}$  and  $PM_{2.5}$ ) and sulphur dioxide (SO<sub>2</sub>). Road vehicles are the main sources of NO<sub>2</sub>,  $PM_{10}$  and  $PM_{2.5}$  in the area. Diesel and steam engines emit NO<sub>2</sub> and  $PM_{10}$ ; they also emit SO<sub>2</sub>.

National objectives for NO<sub>2</sub>, PM<sub>10</sub>, PM<sub>2.5</sub> and SO<sub>2</sub> are in **Table 2.1** below.

| Pollutant         | Air quality objective levels                                           | Measured as    |
|-------------------|------------------------------------------------------------------------|----------------|
| NO <sub>2</sub>   | 200 µg/m <sup>3</sup> , not to be exceeded more than 18 times per year | 1-hour mean    |
|                   | 40 µg/m <sup>3</sup>                                                   | Annual mean    |
| PM10              | 50 µg/m <sup>3</sup> , not to be exceeded more than 35 times per year  | 24-hour mean   |
|                   | 40 µg/m <sup>3</sup>                                                   | Annual mean    |
| PM <sub>2.5</sub> | 25 μg/m <sup>3</sup>                                                   | Annual mean    |
|                   | Target of 15% reduction in concentrations at urban background          | Annual mean    |
| SO <sub>2</sub>   | 266 µg/m <sup>3</sup> , not to be exceeded more than 35 times a year   | 15-minute mean |
|                   | 350 µg/m <sup>3</sup> , not to be exceeded more than 24 times a year   | 1-hour mean    |
| 1                 | 125 µg/m <sup>3</sup> , not to be exceeded more than 3 times a year    | 24-hour mean   |

When considering NO<sub>2</sub> emissions, nitrogen oxides (NOx) are usually calculated. NO<sub>x</sub> converts to NO<sub>2</sub> in the atmosphere. The relationship between NO<sub>x</sub> and NO<sub>2</sub> is not linear, but the majority of NO<sub>x</sub> is likely to convert to NO<sub>2</sub> in the relatively rural setting of the RVR.

## 2.2 Receptors

## 2.2.1 A21

There are no relevant receptors near the proposed level crossing on the A21. The nearest residential properties are around 150 m to the north, close to the roundabout at the junction of the A21, Northbridge Street and Church Lane. Two properties are approx. 15 m from the A21.

## 2.2.2 Northbridge Street

The nearest property to the proposed level crossing is around 50 m to the north and approximately 2 m from the kerbside. There are other properties further away from the proposed level crossing.

### 2.2.3 B2244

Udiam Cottages are on the B2244, approximately 180 m south of the proposed level crossing and 2 m from the kerb.

Udiam Farm is more than 100 m east of the B2244 and pollution levels there will not be influenced measurably by changes in traffic on the B2244.

### 2.2.4 Ecology

The land immediately adjacent to the proposed level crossings is mainly open arable and pasture farm land with small pockets of deciduous woodland. The closest designated ecological site is Wellhead Wood Ancient Woodland approx. 130 m to the south of the proposed track alignment.

### [Figure to be added]

## 2.3 Local Authority Review and Assessment Information

Rother District Council (RDC) publishes air quality review and assessment information periodically, as part of its statutory air quality duties. Air quality in Rother district is generally good. Road traffic is the main source of pollution near the proposed extension, with the A21 being a major route. There are currently no areas in Rother where members of the public are exposed to pollution levels in excess of national air quality objectives<sup>1</sup>.

#### 2.3.1 Monitoring

Continuous monitoring is undertaken at two sites within the District of Rother. One of these sites is located on De La Warr Road in Bexhill-on-Sea (RY2). It is located approximately 17 km south of the proposed scheme and monitors  $NO_2$  and  $PM_{10}$ . Table 2.2 shows  $NO_2$  and  $PM_{10}$  monitoring results from this kerbside monitoring site. The  $NO_2$  annual mean,  $NO_2$  one-hour,  $PM_{10}$  annual mean and  $PM_{10}$  24-hour measurements were all within national objectives between 2012 and 2016. Although in a different setting from the RVR, this is the only  $PM_{10}$  monitoring station within the borough.

| Year      | Annual mean NO <sub>2</sub><br>(µg/m <sup>3</sup> ) <sup>2</sup> | No of 1-hour<br>exceedances NO <sub>2</sub> <sup>3</sup> | Annual mean PM <sub>10</sub><br>(µg/m <sup>3</sup> ) <sup>4</sup> | No of 24-hour<br>exceedances PM <sub>10</sub> <sup>5</sup> |
|-----------|------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|
| 2012      | 27.5                                                             | 0                                                        | 20.8                                                              | 8 (37)                                                     |
| 2013      | 26.0                                                             | 0                                                        | 25.2                                                              | 7                                                          |
| 2014      | 22.5                                                             | 0 (105)                                                  | 19.0                                                              | 0 (30)                                                     |
| 2015      | 19.8                                                             | 0 (100)                                                  | 24.3                                                              | 2 (33)                                                     |
| 2016      | 25.2                                                             | 0                                                        | 18.1                                                              | 0 (27)                                                     |
| Objective | 40.0                                                             | 18                                                       | 40.0                                                              | 35                                                         |

## Table 2.2 Monitoring results for RY2 monitoring location

Bold indicates exceedance of the objectives. *Italics* indicates data capture target not met. ND = No Data.
Source: Rother District Council. Air Quality Annual Status Report (ASR), 2017.

There are two kerbside  $NO_2$  diffusion tube monitoring locations relatively close to the Scheme site. Diffusion tube DT2 is approximately 77 m south of Northiam station, on the existing KESR line.

<sup>&</sup>lt;sup>1</sup> Rother District Council (October 2017), 2017 Air Quality Annual Status Report (ASR)

<sup>&</sup>lt;sup>2</sup> Data capture less than 75%, annual mean NO<sub>2</sub> concentrations have been annualised (in brackets, where available).

 $<sup>^3</sup>$  Data capture less than 85%. 99.8th percentile of one-hour mean NO<sub>2</sub> concentrations ( $\mu g/m^3$ ) included in brackets (where available). A 99.8th percentile concentration (in brackets) below 200  $\mu g/m^3$  indicates compliance with the one-hour objective.

<sup>&</sup>lt;sup>4</sup> Data capture less than 75%, annual mean PM<sub>10</sub> concentrations have been annualised (in brackets, where available).

<sup>&</sup>lt;sup>5</sup> Data capture less than 85%. 90.4th percentile of 24-hour mean PM<sub>10</sub> concentrations (µg/m<sup>3</sup>) included in brackets (where available). A 90.4th percentile concentration (in brackets) below 50 µg/m<sup>3</sup> indicates compliance with the 24-hour objective.

Diffusion tube DT9 is on the A21, approximately 250 m north of the proposed A21 level crossing of the RVR.

The results of  $NO_2$  diffusion tube monitoring at locations nearest to the site are shown in **Table 2.3**. The results indicate that  $NO_2$  concentrations are within the annual mean objective level.

### Table 2.3 Annual mean NO<sub>2</sub> concentrations at diffusion tube sites (µg/m<sup>3</sup>)

| Site name | Location             | Site type | 2012 | 2013 | 2014 | 2015 | 2016 |
|-----------|----------------------|-----------|------|------|------|------|------|
| DT2       | North of<br>Northiam | Kerbside  | 19.4 | 18.2 | 20.8 | 18.4 | 23.5 |
| DT9       | A21<br>Robertsbridge | Kerbside  | 23.9 | 16.1 | 26.6 | 22.1 | 30.6 |
| Objective |                      |           | 40.0 |      |      |      |      |

Bold indicates exceedence of the objectives. <u>Underlined Bold</u> indicates a potential exceedance of the one-hour objective, due to recorded annual mean concentrations exceeding 60 µg/m<sup>3</sup>. ND = No Data.

- Source: Rother District Council. Air Quality Annual Status Reports (ASR), 2016 and 2017

## 2.4 Defra Background Mapping

Background concentrations of  $NO_2$ ,  $PM_{10}$  and  $SO_2$  were obtained from the Defra background maps<sup>6</sup> for the 1 km x 1 km grid squares along the Proposed route of the RVR line. Background  $NO_2$ ,  $PM_{10}$  and  $SO_2$  concentrations for 2021, the opening year of the development, are shown in Table 2.4.

Table 2.4 Defra annual mean background pollutant concentrations along the Proposed route of the RVR line (µg/m<sup>3</sup>)

| Grid square    | 2021 NO <sub>2</sub> | 2021 NO <sub>x</sub> | 2021 PM10 | 2021 PM <sub>2.5</sub> | 2021 SO <sub>2</sub> |
|----------------|----------------------|----------------------|-----------|------------------------|----------------------|
| 573500, 123500 | 6.7                  | 8.7                  | 11.9      | 8.1                    | 3.8                  |
| 573500, 124500 | 6.3                  | 8.2                  | 11.4      | 7.6                    | 3.8                  |
| 574500, 123500 | 6.4                  | 8.3                  | 12.3      | 8.1                    | 3.7                  |
| 574500, 124500 | 6.5                  | 8.4                  | 11.9      | 7.9                    | 3.8                  |
| 575500, 123500 | 6.0                  | 7.7                  | 11.3      | 7.6                    | 3.7                  |
| 575500, 124500 | 6.0                  | 7.7                  | 11.7      | 7.8                    | 3.7                  |
| 576500, 123500 | 5.9                  | 7.6                  | 11.3      | 7.5                    | 3.7                  |
| 576500, 124500 | 5.9                  | 7.6                  | 12.0      | 7.9                    | 3.8                  |
| 577500, 123500 | 6.0                  | 7.8                  | 12.6      | 8.2                    | 3.8                  |
| 577500, 124500 | 6.0                  | 7.7                  | 12.7      | 8.3                    | 3.8                  |
| 578500, 123500 | 6.0                  | 7.8                  | 12.2      | 8.1                    | 3.8                  |
| 578500, 124500 | 6.1                  | 7.9                  | 12.7      | 8.4                    | 3.9                  |
| Objective      | 40                   | -                    | 40        | -                      | -                    |

There is little air quality monitoring in the vicinity. The nearest NO<sub>2</sub> monitoring site is a kerbside site on the A21 in Robertsbridge. Measured annual mean NO<sub>2</sub> concentrations here have been no more

<sup>&</sup>lt;sup>6</sup> Defra Background mapping data for local authorities – 2015 https://uk-air.defra.gov.uk/data/laqm-background-maps?year=2015.

than 30.6  $\mu g/m^3$  in recent years ^1, within the national air quality annual mean objective level of 40  $\mu g/m^3.$ 

## 2.5 Overall Baseline

Overall, pollution levels in the area are low and typical of rural areas. Even along the A21, measured  $NO_2$  levels at the kerbside site are within the national annual mean objective level.

## 3.0 Desktop Review of Heritage Railways

### 3.1 Heritage Railway EIAs

### 3.2 Air Quality Management Areas

There is one air quality management area (AQMA) in the UK associated with heritage railways, the Great Central Railway AQMA in Charnwood borough. Charnwood Borough Council's 2006 Air Quality Action Plan7 states:

"Air quality problems in the vicinity of the GCR are associated with emissions from the engineering shed when the steam locomotives are 'fired up' each day in order to bring them into operational service. The process takes around 3 hours during which time the dispersion characteristic of the plume is poor due to low temperatures and below-optimum combustion. The nearest properties are within 20 metres.

"Monitoring of air quality near to the sheds allied with modelling of the emissions has concluded that approximately 70 residential properties may be subject to more than 35 incidents per year when they are exposed to more than 266 mg/m<sup>3</sup> of sulphur dioxide for 15 minutes. The nature of the activities at the GCR mean that receptors are not subject to chronic, long-term exposure. The problem is exclusively due to occasional, short-term exposure to high levels of SO<sub>2</sub> when the operations at the engine sheds and weather combine to prevent adequate dispersion of the emissions."

[discussion to follow but noted that firing up activities will not take place along the 4km section of reinstated track]

## 3.3 Other Rail-related Air Quality Issues

There has been concern about diesel emissions associated with the Great Western Mainline. A 2014 study<sup>8</sup> for Ealing and Islington Councils found that, although then-current GLA modelling indicated that diesel trains on the Paddington mainline may be responsible for breaches of the NO<sub>2</sub> annual mean objective, real-world measurements did not support the modelled predictions and a clear signal from diesel trains was difficult to detect. A 2015 study<sup>9</sup> showed that, while train stations are not required to comply with national air quality standards, pollution levels at the station were often higher than on the Marylebone Road. However, the Great Western mainline is a busy line, with large numbers of high-power diesel engines. Given the difference in scale between the Great Western mainline and RVR, it is not anticipated that the issues associated with the Great Western mainline will be applicable to RVR.

<sup>&</sup>lt;sup>7</sup> Charnwood Borough Council (September 2006), Local Air Quality Management – Final Action Plan

<sup>&</sup>lt;sup>8</sup> Fuller et al. (2014), Air Pollution Emissions from Diesel Trains in London,

<sup>&</sup>lt;sup>9</sup> Uven Chong et al (2015), Environ. Res. Lett. 10 094012

## 4.0 Potential Air Quality Impacts from Proposed Level Crossings

## 4.1 Proposed Crossings

Three level crossings are proposed, as described in the 2011 Rother Valley Railway Proposed Level Crossings Traffic Impact Study<sup>10</sup>:

- Crossing 1, on Northbridge Street, approximately 300 m south-west of the roundabout at the junction of the A21, Northbridge Street and Church Lane;
- Crossing 2, on the A21 Robertsbridge Bypass, approximately 140 m south of the roundabout; and
- Crossing 3, on the B2244 Junction Road, approximately 6 km south of Hawkhurst.

The 2011 Traffic Impact Study looked at the impacts of the proposed level crossings on traffic. It made predictions of likely queue lengths during crossing closures for typical weekday, Saturday and Sunday traffic situations in spring/ autumn and in summer. In addition, it considered likely queue lengths for the May Day and August bank holidays.

## 4.2 Potential Emissions Impacts from Proposed Level Crossings

## 4.2.1 Calculation of Emissions

Emissions of NO<sub>x</sub> and PM<sub>10</sub> were calculated for the year 2021, using information from the Traffic Impact Study<sup>10</sup> and vehicle emissions factors from Defra. A more detailed description of the emissions calculation method is provided in Appendix A. PM<sub>2.5</sub> emissions have not been calculated explicitly, since these follow similar trends to and are included within PM<sub>10</sub> emissions.

## 4.2.2 Results

**Tables 4.1** and **4.2** show calculated increases in NO<sub>x</sub> and PM<sub>10</sub> emissions as a result of the proposed level crossings. The increase in NO<sub>x</sub> ranges from 1.6 to 5.6 %. The increase in PM<sub>10</sub> ranges from 0.7 to 2.3 %. These additional emissions from queues are relevant only close to the proposed crossings, where the traffic queues form before vehicles accelerate away.

## Table 4.1: Calculated NO<sub>x</sub> emissions per unit distance in 2021

| Road           | Baseline NOx<br>(kg/ km/ annum) | Additional NOx<br>from queues<br>(kg/ km/ annum) | Increase in NOx as<br>a result of<br>proposed level<br>crossing closures<br>(%) |
|----------------|---------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------|
| A21            | 2,247.0                         | 126.5                                            | 5.6%                                                                            |
| Northbridge St | 275.6                           | 4.4                                              | 1.6%                                                                            |
| B2244          | 292.4                           | 13.7                                             | 4.7%                                                                            |

<sup>10</sup> Mott MacDonald (October 2011), Rother Valley Railway: Proposed Level Crossings Traffic Impact Study

#### Table 4.2: Calculated PM<sub>10</sub> emissions per unit distance in 2021

| Road           | Baseline PM₁₀<br>(kg/ km/ annum) | Additional PM₁₀<br>from queues<br>(kg/ km/ annum) | Increase in PM <sub>10</sub><br>as a result of<br>proposed level<br>crossing closures<br>(%) |
|----------------|----------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------|
| A21            | 190.48                           | 4.39                                              | 2.3%                                                                                         |
| Northbridge St | 21.51                            | 0.16                                              | 0.7%                                                                                         |
| B2244          | 26.03                            | 0.47                                              | 1.8%                                                                                         |

## 4.3 Potential Air Quality Impacts of Proposed Level Crossings

The predicted increases in emissions arising from the level crossing will lead to increases in air pollution levels in the immediate vicinity of the crossings. This section considers qualitatively the likely magnitude of change in  $NO_2$  and  $PM_{10}$  levels.

Best-practice guidance on assessing air quality for planning<sup>11</sup>, produced by Environmental Protection UK and the Institute of Air Quality Management, indicates that changes in pollution levels in areas with low concentrations are likely to be negligible if they are 5 % or less. This guidance has been considered in this qualitative assessment.

Pollution levels are known to fall steeply with distance from roads. Concentrations at kerbside locations (less than 1 m from the kerb) are highest, with a steep drop in concentrations to around 20 m from the kerb. Concentrations fall more slowly after this; at around 50 m, road contributions are very small; by 200 m, it would be hard to differentiate between pollutant contributions from roads and from general background levels. Distances of receptors from kerbsides have also been considered in this qualitative assessment.

#### 4.3.1 A21

According to the Traffic Impact Study<sup>10</sup>, average traffic queues for level crossing closures in 2021 are predicted to be in the range 46-66 m, with the exception of bank holidays, where they range from 73-196 m. Maximum queues in 2021 range from 53 to 82 m in general, with a much longer maximum queue of 1,217 m during the May bank holiday.

Residential receptors close to the A21 are more than 100 m to the north of the proposed level crossing and the small calculated increases in emissions would not, therefore, be close enough to impact upon these receptors for the vast majority of the time. The extended queues on the May Day Bank Holiday would have a negligible impact on annual mean pollution concentrations at these receptors and there is no realistic risk that short-term national objectives would be breached.

## 4.3.2 Northbridge Street

The small increases in NO<sub>x</sub> and PM<sub>10</sub> associated with level crossing closures are likely to lead to negligible increases in NO<sub>2</sub> and PM<sub>10</sub> levels in the immediate vicinity of the proposed level

<sup>&</sup>lt;sup>11</sup> Moorcroft and Barrowcliffe. et al. (2017) Land-use Planning & Development Control: Planning for Air Quality. v1.2. Institute of Air Quality Management, London.

crossing. In addition, according to the Traffic Impact Study, maximum queues from barrier closures in 2021 will be 12 m. The nearest residential receptors will be around 40 m from the queues and it is, therefore, highly likely that changes in pollution levels relevant to air quality objectives will not be discernible at these receptors.

### 4.3.3 B2244

As for Northbridge Street, the small increases in NO<sub>x</sub> and PM<sub>10</sub> associated with level crossing closures are likely to lead to negligible increases in NO<sub>2</sub> and PM<sub>10</sub> levels in the immediate vicinity of the proposed level crossing. The nearest residential receptors are some distance from the predicted queues associated with level crossing closures. It is highly likely that there will be no discernible increase in pollution levels at these receptors.

www.templegroup.co.uk

- 5.0 Potential Impacts from Heritage Railway Steam and Diesel Engines
- 5.1 [Awaiting activity & fuel usage info from client]

## 6.0 Conclusions

The desktop review has identified that there is one AQMA in England associated with heritage railways. [Discussion on SO2 AQMA]. Heritage railways in general are unlikely to lead to air pollution levels that breach national standards, since they operate limited services compared to national rail services.

The assessment of potential air quality impacts from the proposed level crossings has shown that increases in NO<sub>x</sub> emissions will be a maximum of 5.6 % close to the proposed A21 level crossing and less elsewhere. Increases in PM<sub>10</sub> emissions will be a maximum of 2.3 % close to the proposed A21 level crossing and lower elsewhere. Potential changes in pollution levels at receptors close to the A21, Northbridge Street and B224 are considered to be negligible in all cases.

[Summary of impacts from engines]

## Appendix A – Method for Calculating Changes in Road Vehicle Emissions

## A.1 Appendix Heading 2

Emissions per unit length of each road considered were calculated without the proposed crossings in place, using traffic flow data from xxx and using Defra's Emissions Factors Toolkit (EFT)<sup>12</sup>. The EFT allows calculations of emissions from road vehicles along road links, given traffic flow, composition and average-speed inputs. Vehicles typically have lower emission rates per unit distance at around 50 km/h, and higher emission rates at low and high speeds.

Queuing vehicles have lower average speeds and, hence, higher emissions. Vehicles emit additional pollutants while queuing and when accelerating away from queues. Deceleration when joining a queue is not likely to generate additional emissions.

The EFT, as a speed-based tool, contains a database of vehicle emissions (in g/km/s). It does not contain emissions factors for average speeds below 5 km/h. As a pessimistic assumption, it has been assumed that vehicles queuing and vehicles accelerating away will have an emission rate corresponding to that of vehicles at 5 km/h. Additional emissions associated with queuing have been calculated for the year 2021 using this assumption.

Average queue lengths were taken from the Traffic Impact Study<sup>10</sup>. A number of additional assumptions were taken from the Traffic Impact Study<sup>10</sup>, including:

- an average vehicle length of 5.75 m;
- an average crossing closure time of 51 s;
- a saturation flow rate (rate at which vehicles cross the railway line after a closure) of 30 vehicles per minute.

Additional emissions per level crossing closure were calculated based on average queue length for the following day types:

- spring/ autumn weekday
- spring/ autumn Saturday
- spring/ autumn Sunday
- May Day Bank Holiday
- summer weekday
- summer Saturday
- summer Sunday
- August bank holiday

<sup>12</sup> Defra Emissions Factors Toolkit Version 8.0.1. Available from <u>https://laqm.defra.gov.uk/review-and-assessment/tools/emissions-factors-toolkit.html</u>

Commented [AL1]: check with Ele and Marko

The total additional emissions per annum on each link were calculated from the 2018 train timetable provided by RVR, by multiplying the number of train trips on each day type by the calculated emissions per crossing closure for the relevant day type.

The May Day Bank Holiday is an exceptional traffic event on the A21, with large numbers of vehicles heading towards and away from Hastings. As a highly pessimistic assumption, it has been assumed that level crossings on each May bank holiday will lead to slow-moving traffic for an additional six hours. This is pessimistic, since there is already a substantial amount of queuing on the A21 on May Day and since the late May bank holiday is not associated with such high levels of traffic.

The Traffic Impact Study<sup>10</sup> provided only limited information on queue lengths along Northbridge Street. It has been assumed that the spring/ autumn weekday queue lengths are representative, on average, of queue lengths at other times.