

DOCUMENT CONTROL SHEET

Issued by	Hydrock Consultants Limited Over Court Barns Over Lane Almondsbury Bristol BS32 4DF	Tel: 01454 619533 Fax: 01454 614125 www.hydrock.com		
Client	Bristol Airport			
Project name	Bristol Airport 12mppa Expansion			
Title	Foul and Surface Water Drainage Strategy			
Doc ref	BAE-HYD-XX-XX-RP-D-5001			
Project no.	C-09194			
Status	S2 - For Information			
Date	06/12/2018			

Document Production Record				
Issue Number	P05	Name		
Prepared by		Richard Hughes Eng Tech TMICE		
Checked by				
Approved by				

Document Revision Record					
Issue Number	Status	Date	Revision Details		
P02	S2	02/10/2018	Taxiway areas added.		
P03	S2	24/10/2018	MSCP/Interchange & Northern Parking excluded from 12 mppa proposals.		
P04	S2	16/11/2018	Amended to Client comments.		
P05	S2	05/12/2018	Updated masterplan.		

Hydrock Consultants Limited has prepared this report in accordance with the instructions of the above named client for their sole and specific use. Any third parties who may use the information contained herein do so at their own risk.

CONTENTS

1.	INTRODUCTION	1
2.	SITE INFORMATION	2
2.1	Location and Setting	2
2.2	Topography	2
2.3	Existing Site Features	2
2.4	Proposed Development	2
3.	DRAINAGE STRATEGY – SURFACE WATER	4
3.1	Surface Water	4
3.2	West Terminal Extension (Phases 2 & 2A), Terminal Canopy and Service Yard	5
3.3	Transport Interchange and Multi-Storey Car park (MSCP2)	7
3.4	Multi-Storey Car Park (MSCP3)	9
3.5	New Gyratory Road System	10
3.6	Northern Surface Car Parking	11
3.7	Surface Parking to Cogloop 2 Land	12
3.8	South Terminal Extension / New Arrivals VCC (Bussing)	14
3.9	Taxiway Extensions	14
3.10	Walkway to East pier	15
4.	DRAINAGE STRATEGY -FOUL WATER	17
4.1	Description	17
4.2	Existing Site and Drainage	17
4.3	Development Proposals	17
4.4	Drainage Proposals	18
5.	CONCLUSIONS	21
5.1	SURFACE WATER	21
5.2	Foul Water	21

Appendices

Appendix A - Site Location Plan

Appendix B - Proposed Master Plan

Appendix C - Existing Drainage Plan

Appendix D - West Terminal Extension, Terminal Canopy and New Service Yard Drawings and Calculations

Appendix E - Transport Interchange / MSCP2 Drawings and Calculations

Appendix F - MSCP3 Drawings and Calculations

Appendix G - New Gyratory Road Drawing and Calculations

Appendix H - Northern Surface Parking Drawing and Calculations

Appendix I - Surface parking to Cogloop 2 Land Drawings and Calculations

Appendix J - Taxiway Extensions

Appendix K - Foul Drainage

1. INTRODUCTION

This report has been prepared by Hydrock on behalf of Bristol Airport in support of a Planning Application to be submitted to North Somerset Council for the proposed interim 12 mppa (million passengers per annum) expansion scheme of Bristol Airport.

This report sets out the foul and surface water drainage strategies that will draw upon historic and current information with a view to utilising existing systems where possible whilst ensuring that the final proposals meet current day standards.

2. SITE INFORMATION

2.1 Location and Setting

Bristol Airport is located approximately 4 miles to the south-west of Bristol, adjacent to the A38.

The airport is situated on the top of a plateau of high ground called Broadfield Down and is surrounded by predominantly open, rural, undulating countryside with extensive woodland areas to the west and open farmland. There are a number of small residential settlements immediately to the north and east of the site.

The site is bounded by Downside Road to the north, with agricultural / pasture use fields beyond; small woodland areas to the northeast and northwest; and, residential properties to all other boundaries.

A site location plan is included in Appendix A.

2.2 Topography

The site has a high point of 190m AOD towards the western end of the main runway and falls generally to the north-west and south-east.

2.3 Existing Site Features

The airport site is characterised by areas that ae described as either being 'landside' or airside'.

'Landside' features generally comprise the main terminal building, car parks, with both permeable and impermeable surfacing, access roads, a multi-storey car park, various outbuildings, a hotel, an administration block and landscaping.

'Airside' features include impermeable surfaces in the form of runways, taxiways, aircraft aprons, access roads, the main terminal buildings, a fuel farm, control tower and associated infrastructure buildings.

2.4 Proposed Development

The proposal is for an Interim Planning Application for works to enable expansion of the capacity of the airport in order to be able to cater for up to 12 million passengers per annum, (12 mppa).

The proposed works will include, inter alia, the following elements;

- West Terminal Extension (Phases 2 and 2A)
- New Service Yard
- Transport Interchange and Multi-Storey Car Park (MSCP2)
- Multi-Storey Car Park (MSCP3)
- New Gyratory Road
- Northern Surface Parking

- Surface Parking to Cogloop 2 Land
- South Terminal Extension / New Arrivals VCC (Bussing)
- Taxiway Extensions
- Walkway to East Pier

It should be noted that the Transport Interchange/MSCP2 and Northern Surface Parking works are not part of the 12 mppa application but have previously been approved under the earlier 10 mppa application. However, they have been included in this report as the works will have been completed prior to the current proposals coming forward and therefore will be a change to existing baseline conditions.

A proposed layout plan is included in Appendix B.

DRAINAGE STRATEGY – SURFACE WATER

3.1 Surface Water

3.1.1 Site Wide Pre-Development

The site is served by an entirely private drainage systems which is owned and maintained by Bristol Airport.

Currently, surface water runoff from both 'landside' and 'airside' features is collected via a series of gulleys, drainage channels and roof drainage systems into a positive piped network. Ultimately, all runoff discharges to soakaway features located throughout the site and are variously of either perforated ring construction, tanks or filter trenches. Where appropriate, water is passed through petrol/oil interceptors before discharging to the soakaways.

The drainage system has been added to, amended, or abandoned over time as various parts of the site have been redeveloped. Not all of these works have been recorded and therefore there is no definitive, overall record plan of the current drainage network. It should also be borne in mind that there is a more or less continuous phase of improvement works being carried out which affect and alter the drainage network. It is intended to produce a definitive record of the drainage systems as part of these works.

Various historical record plans have been collated and amalgamated into a single drawing. A copy of the plan showing the combined existing drainage information, drawing no. BAE-HYD-XX-XX-DR-D-2001, is included in Appendix C.

A more detailed description and assessment of the existing drainage for each of the specific application areas is set out in the relevant sections below.

3.1.2 Site Wide Post-Development

In accordance with the Sustainable Drainage Systems (SUDS) management train¹, rainfall run-off should be reused, infiltrated to ground, discharged to local watercourses or discharged to a local sewer network (in that order of priority). This approach is supported by Building Regulations Part H and Paragraph 080 of NPPG.

From previous work on the airport site, the strategy will be to infiltrate all surface water runoff from the proposed application works to ground following the principles that have been established to date.

Due to the nature of the site, the provision of open water features such as ponds or swales is not encouraged in order to reduce the potential risk from bird strikes. For this reason these types of SuDS features ae not included in the proposals and water quality will be addressed through the provision of filtration devices and oil interceptors, as appropriate.

Infiltration testing has previously been undertaken across the site as part of previous planning applications and detailed designs. Across the northern section of the airport site an average infiltration value of 4.2×10^{-5} m/s was found for the area in the vicinity of the Set Down/Pick Up Car Park and Hotel area and an average value of 5.13×10^{-5} m/s was established across the surface car parks. Previous infiltration testing has been undertaken for the 'Cogloop 1' parking area to the south of the runway

¹ CIRIA (2015) CIRIA C753 The SuDS Manual

established an average infiltration rate of 3.35×10^{-5} m/s. This value has been used for the initial assessment of the proposed Cogloop 2 parking extension.

Additional site testing will be carried out at the specific soakaway locations prior to construction and the design details amended as necessary.

All soakaways will be designed to cater, as a minimum, for the 1 in 30 year storm event and will be tested for the 1 in 100 year event plus an allowance of +30% for climate change in order to assess the performance of the structure. The figure of +30% has been selected in accordance with the advice set out in the DEFRA guidance note, "Flood risk assessments: climate change allowances". Table 2 of this document provides a range of allowances dictated by the design life of the scheme and an assessment of the application of either the Central or Upper End banding as appropriate. In the case of the scheme being considered, it is unlikely that it will remain unchanged beyond a period of 50 years. This would place the development lifetime on the cusp between the 2040 to 2069 and 2070 to 2115 periods for which rainfall increases are specified. For the 2070 to 2115 period, a value of +40% is required if the 'Upper end' allowance is used, or +20% if the 'Central' allowance is used. CIRIA SUSDRAIN guidance* indicates that the +20% allowance can be used if runoff in excess of this drainage system design standard up to the +40% standard can be managed safely within suitable areas of the site. However, for this assessment in order to ensure that there is sufficient contingency within the design, a figure of +30% has been used for sizing soakaways/piped drainage. Final climate change allowances (whether +20%, +30% or +40%) would be selected based on subsequent detailed drainage design and available surface storage in each development area.

All soakaway structures shall be located a minimum of 5m from any building.

A detailed assessment of each application element is set out below.

3.2 West Terminal Extension (Phases 2 & 2A), Terminal Canopy and Service Yard

3.2.1 Description

The proposal is for an extension to the western end of the existing terminal building, a new canopy to the northern side of the terminal and the provision of a new Service Yard immediately to the west of the building.

The area of the proposed works is currently occupied by an existing service yard, car parking, buildings (Gate Gourmet), pedestrian areas and an access road.

3.2.2 Existing Site Area and Drainage

As noted above, the area of the proposed terminal building extension, canopy and service yard is currently given over to impermeable areas for car parking, service yards, buildings and roadways.

The existing surface water drainage systems are shown on Hydrock drawing no. BAE-HYD-XX-XX-DR-D-2003.

*https://www.susdrain.org/files/resources/fact_sheets/applying_climate_change_allowances_to_suds_design_draft.pdf

The site is currently 100% impermeable and is already drained to existing on-site surface water drainage systems. The western end of the Terminal Building currently drains north to point 'A' on the above drawing, ultimately discharging to a soakaway located to the north of MSCP1.

The runoff from the West Apron, Control Tower, Western Walkway, MT Building and associated access roads drain to an oil interceptor located at point 'B' on the plan and then subsequently discharge to a soakaway located under the future MSCP3.

The existing Service Yard and Pick Up/Set Down Car Park and Terminal building frontage are drained by a separate drainage system to point 'C' on the plan. This then discharges to the existing soakaways located in the vicinity of the MSCP1 site.

3.2.3 Development Proposals

The proposal is to extend the western part of the existing terminal building and provide a new canopy to the northern side of the building, thus increasing the amount of roof area. A new Service Yard is also to be provided immediately to the west of the terminal building.

The gross area of the terminal extension is approximately 4,585m² (0.459 ha), the canopy 3,330m² (0.333 ha) and for the Service Yard is 3,561m² (0.356 ha) resulting in total area of 11,476m² (1.148 ha).

The provision of the new Service Yard will also result in alterations to the existing Set Down/Pick Up Car Park area.

All areas will require positive drainage systems to be provided.

3.2.4 Drainage Proposals

As described above, the current development area is already 100% impermeable and is drained by an existing surface water system. The opportunity will be taken to remove the need to drain runoff from the Terminal Building, West Apron, Control Tower and surrounding areas north to soakaways that are currently located in the northern car park areas, which will be affected by the proposed Multi-Storey Car Park proposals. New soakaway units will be installed immediately to the north and west of the Terminal Building.

The proposed surface water drainage systems are shown on Hydrock drawing no. BAE-HYD-XX-XX-DR-D-2004.

Previous site investigations within this area of the Airport site have shown an average infiltration value of 4.2×10^{-5} m/s and this value has been used in the calculations for the soakaways described below.

The eastern part of the West Apron will be intercepted by the new drainage systems to serve the Terminal Building extension and Service Yard thus removing some of the impermeable area currently draining to point 'B'. In view of this reduction, it is proposed to retain the existing oil interceptor in this location. Point 'B' will therefore drain to a new cellular soakaway tank, (Soakaway 1), to the south-west of the hotel complex.

The soakaway has been designed to accommodate the 1 in 30 year storm event and tested against the 1 in 100 year plus 30% climate change scenario. In the latter event, the storage capacity will be exceeded and the additional volume will be accommodated with the combination of an overflow pipe and allowing for a maximum flooded volume of 52m^3 at the soakaway location, which equates to a depth of 100mm. The overflow pipe will discharge to two new linked soakaways constructed along the western boundary of the airport site, (Soakaways 1A and 1B).

The proposed Service Yard and West Terminal Extension will be drained via a new surface water system. This will flow northwards and discharge to a new cellular soakaway tank, (Soakaway 2), located to the east of the Hotel complex as shown on the above mentioned plan. Any existing rainwater pipes and internal surface water drainage points that are being retained will be connected to the new system at appropriate points.

The soakaway has been designed to accommodate the 1 in 30 year storm event and tested against the 1 in 100 year plus 30% climate change scenario. In the latter event, the storage capacity will be exceeded and the additional volume will be accommodated by allowing for a maximum flooded volume of 176m³ at the soakaway location, which equates to a depth of 300mm.

In all of the above cases, the flooded volumes will not affect any critical assets.

The existing Set Down/Pick Up Car Park which is being retained and a section of North Side Road immediately to the south of the Hotel complex will continue to drain towards point 'C' on the plan. It is proposed that these areas drain to a new soakaway located in the verge immediately south of MSCP3, (Soakaway 3). This soakaway will also cater for the existing highway drainage to the west and northwest of the Hotel complex. It will be necessary to reconfigure the existing highway drainage connections to accommodate changes in sewer alignment and level.

The soakaway has been designed to accommodate the 1 in 30 year storm event and tested against the 1 in 100 year plus 30% climate change scenario.

The area under canopy to the northern side of the building is currently pedestrianised and drains to point 'D'. The provision of a new canopy will extend the impermeable area and it is proposed that this is drained to a new soakaway located immediately to the north.

The soakaway has been designed to accommodate the 1 in 30 year storm event and tested against the 1 in 100 year plus 30% climate change scenario.

3.3 Transport Interchange and Multi-Storey Car park (MSCP2)

3.3.1 Description

The proposal is for the construction of a new Transport Interchange and Multi-Storey Car Park (MSCP2) located to the north of the main Terminal Building and to the east of MSCP1.

A new access road will also be constructed immediately to the south and will be served by a revised gyratory system to the east.

It should be noted that these elements are not part of the 12 mmpa application but have been approved under the previous 10 mppa approval. The proposals are however included here as they represent changes that will occur to the existing drainage baseline.

3.3.2 Existing Site Area and Drainage

The Interchange will be built on the site of an existing surface car park.

The existing surface water drainage systems are shown on Hydrock drawing no. BAE-HYD-XX-XX-DR-D-2007.

The site is currently occupied by surface parking comprising Premier Parking, long stay and short stay parking. The former is asphalt paving and is 100% impermeable, the remaining areas are a permeable surfacing.

3.3.3 Development Proposals

The proposal is to provide a new Transport Interchange multi-storey car park, with associated access roads, which will form a direct link to the main Terminal Building.

The gross area of the new car park is $16,730\text{m}^2$ (1.673 ha) and the access road to the south is $1,531\text{m}^2$ (0.153 ha).

All areas will require positive drainage systems to be provided.

3.3.4 Drainage Proposals

Approximately 85% of the area of the Interchange site is currently Premier Parking which is fully paved and is positively drained to an existing soakaway, (Soakaway 7) located immediately to the north west which also caters for the existing MSCP1. This soakaway also accommodates the existing runoff from the western part of the Terminal Building, the western service yard and the main access road fronting the Terminal Building. As described in separate sections of this report, that part of the Terminal Building and service yard will be drained to a new soakaway (Soakaway 2). The main access road will also be removed and therefore a significant part of the drained area currently contributing to existing Soakaway 7 will be removed in the redevelopment proposals. Consequently, it is proposed that the western half of Interchange is drained to the existing soakaway as there will be a net decrease in contributing area.

The proposed surface water drainage systems are shown on Hydrock drawing no. BAE-HYD-XX-XX-DR-D-2008.

Previous site investigations within this area of the Airport site have shown an average infiltration value of 5.13×10^{-5} m/s and this value has been used in the calculations for the soakaways described below.

The runoff from the eastern part of the multi-storey car park will be collected via a new piped system and directed to a new cellular soakaway unit, (Soakaway 6), located in the surface car park area immediately to the north-east of the building.

The soakaway has been designed to accommodate the 1 in 30 year storm event and tested against the 1 in 100 year plus 30% climate change scenario. No flooding will occur in this latter event.

The proposed access road immediately to the south of the Interchange will be drained via a series of road gulleys to a collector pipe flowing west to east in the verge. This will discharge to a new cellular soakaway unit, (Soakaway 8), located in the proposed verge to the south.

The soakaway has been designed to accommodate the 1 in 30 year storm event and tested against the 1 in 100 year plus 30% climate change scenario. No flooding will occur in this latter event.

3.4 Multi-Storey Car Park (MSCP3)

3.4.1 Description

The proposal is for the construction of a new multi-storey car park located in the north-west corner of the airport site. The car park will effectively form an extension of the adjacent MSCP1.

A new access road will also be constructed immediately to the south.

3.4.2 Existing Site Area and Drainage

The MSCP will be built on the site of an existing surface car park.

The existing surface water drainage systems are shown on Hydrock drawing no. BAE-HYD-XX-XX-DR-D-2005.

The site is currently a mixture of permeable surfacing and asphalt roadways which drain to various soakaway systems.

The site area also includes a number of soakaways that serve the western terminal building, the West Apron, Control Tower area and Set Down/Pick Up area. In order to allow the construction of the MSCP it will be necessary to remove these existing drainage systems and this work has been described elsewhere under the relevant application elements.

3.4.3 Development Proposals

The proposal is to provide a new multi-storey car park with associated access roads which will effectively form an extension to the MSCP1.

The gross area of the new car park is $11,135\text{m}^2$ (1.114 ha) and the access road to the south is $1,475\text{m}^2$ (0.175 ha).

All areas will require positive drainage systems to be provided.

3.4.4 Drainage Proposals

In order to allow construction of the MSCP3, it will be necessary to remove the existing soakaways serving the Terminal Building, West Apron, Control Tower and surrounding areas. New soakaway units

will be installed immediately to the north and west of the Terminal Building and are described in more detail int the relevant sections for these areas.

The proposed surface water drainage systems are shown on Hydrock drawing no. BAE-HYD-XX-XX-DR-D-2006.

Previous site investigations within this area of the Airport site have shown an average infiltration value of 5.13×10^{-5} m/s and this value has been used in the calculations for the soakaways described below.

The runoff from the multi-storey car park will be collected via a new piped system and directed to a new cellular soakaway unit, (Soakaway 4), located on the northern side of the building.

The soakaway has been designed to accommodate the 1 in 30 year storm event and tested against the 1 in 100 year plus 30% climate change scenario. In the latter event, the storage capacity will be exceeded and the maximum flooded volume of 40m³ will be accommodated in the surface car park in and around the soakaway area. The existing bund along the northern boundary of the airport boundary will prevent any flood water escaping from the site. The flooded volumes will not affect any critical assets.

The proposed access road immediately to the south of the MSCP3 will be drained via a series of road gulleys to a collector pipe flowing west to east in the verge. This will discharge to a new cellular soakaway unit, (Soakaway 5), located in the proposed verge to the south of the existing MSCP1.

The soakaway has been designed to accommodate the 1 in 30 year storm event and tested against the 1 in 100 year plus 30% climate change scenario. No flooding will occur in this latter event.

3.5 New Gyratory Road System

3.5.1 Description

A new gyratory road system is to be constructed in order to provide access to the proposed Transport Interchange and the reconfigured surface car a parking. This highway network will also include the main revised access into the airport from the A38.

3.5.2 Existing Site Area and Drainage

The area of the proposed gyratory road system is currently occupied by long stay and short stay car parks, nearly all of which are permeable surfaces.

There are no positive drainage systems serving the car parks however, the area does include soakaways and a petrol interceptor which cater for the main access road into the airport, the eastern part of the Terminal Building and the airside aprons.

The works will also include realignment of the main access road which is currently drained by a positive drainage system discharging to soakaways within the existing car park areas.

The existing surface water drainage systems are shown on Hydrock drawing no. BAE-HYD-XX-XX-DR-D-2009.

3.5.3 Development Proposals

The proposed gyratory roads will be constructed with an impermeable asphalt surface and will allow circulatory access to the various surface car parks and the transport Interchange.

3.5.4 Drainage Proposals

As noted above, there a number of existing soakaways and a petrol interceptor which cater for surface water runoff from the existing Terminal Building and aircraft apron areas. These will be retained but, in the case of the units to the north of the proposed gyratory road system will need to be relocated in order to remove them from lying immediately below the new road surface.

The proposed road surface will be drained via gulleys and a positive piped drainage system ultimately discharging to a series of soakaway units.

The approach roads from the east will drain to multiple perforated concrete ring soakaways. For the purposes of preparing a drainage strategy, it has been assumed that each soakaway will cater for approximately $800m^2$ drained area each. These soakaways will be redesigned individually at the detailed design stage when road levels and gulley positions have been fixed. The purpose of this strategy is to identify the approximate locations and numbers of soakaways.

The soakaways have been designed to accommodate the 1 in 30 year storm event and tested against the 1 in 100 year plus 30% climate change scenario. No flooding will occur in this latter event.

The proposed surface water drainage systems are shown on Hydrock drawing no. BAE-HYD-XX-XX-DR-D-2010.

3.6 Northern Surface Car Parking

3.6.1 Description

The existing long and short stay car parks are to be reconfigured, where required, in order to accommodate the proposed works that are planned in the immediate area, i.e. Multi-Storey Car Park, Transport Interchange and Gyratory Road System.

It should be noted that these elements are not part of the 12 mmpa application but have been approved under the previous 10 mppa approval. The proposals are however included here as they represent changes that will occur to the existing drainage baseline.

3.6.2 Existing Site and Drainage

The existing car parks are constructed with permeable surfaces and asphalt search lanes.

There are no positive drainage systems serving the car parks however, the area does include soakaways and a petrol interceptor which cater for the main access road into the airport, the eastern part of the Terminal Building and the airside aprons.

The existing surface water drainage systems are shown on Hydrock drawing no. BAE-HYD-XX-XX-DR-D-2011.

3.6.3 Development Proposals

The existing parking will be reconfigured to suit the other development proposals in the immediate vicinity.

Search lanes will be formed in an impermeable asphalt construction whilst the parking bays will be formed with a permeable surfacing of reinforced grass/gravel.

3.6.4 Drainage Proposals

The impermeable search lanes will be crossfalled in order to shed runoff towards the permeable parking bays.

During frequent storm events runoff will drain through the permeable surfacing and infiltrate naturally to ground. In addition, infiltration trenches will be provided running in a west-east direction in order to cater for more intense rainfall events thus providing further storage volume.

An existing landscape bund to the northern perimeter of the site will provide a containment feature preventing exceedance flows from leaving the site.

The drainage system will be designed such that there will be no flooding up to and including the 1 in 30 year event. The system will also be modelled for the 1 in 100 year event with an allowance of +30% for climate change in order to check the performance of the network and to identify the locations and degree of any flooding. For the purposes of this strategy, a 120m long drainage length has been assumed.

Previous geotechnical investigations have shown an infiltration value of 5.13×10^{-5} m/s through the site.

Lateral infiltration trenches will be provided in an east-west axis in order to intercept water shedding across the parking areas generally in a south-north direction.

The proposed surface water drainage systems are shown on Hydrock drawing no. BAE-HYD-XX-XX-DR-D-2012.

3.7 Surface Parking to Cogloop 2 Land

3.7.1 Description

The proposal is for an extension to the existing Silverzone Cogloop 1 car park area on the southern side of the airport site.

The current car park areas consist of asphalt search lanes with porous gravel parking bays draining direct to ground.

It is intended that the Cogloop 2 proposals will follow those previously employed on Cogloop 1.

3.7.2 Existing Site and Drainage

Cogloop 2 is currently a grassed agricultural field. The site geology generally consists of a reddish brown clayey slightly sandy gravel, overlying jointed limestone bedrock.

The gross area is approximately 4.9 hectares and slopes generally from north to south with an average fall of 1 in 20 with a central band where the fall increase to 1 in 10.

As the site is currently undeveloped it is unlikely that there are any existing drainage systems present.

3.7.3 Development Proposals

The proposal is to provide some 2,700 car parking spaces with associated search lanes. Access will be formed through the existing landscaping bund on the northern boundary of the site from the Cogloop 1 car park.

Search lanes will be formed in an impermeable asphalt construction whilst the parking bays will be formed with a permeable surfacing of reinforced grass/gravel.

3.7.4 Drainage Proposals

The impermeable search lanes will be crossfalled in order to shed runoff towards the permeable parking bays.

During frequent storm events runoff will drain through the permeable surfacing and infiltrate naturally to ground. In addition, infiltration trenches will be provided running in a west-east direction in order to cater for more intense rainfall events thus providing further storage volume.

A 2m high landscape bund will be provided around the perimeter of the site and the section of the southern boundary will therefore provide a containment feature preventing exceedance flows from leaving the site.

The drainage system will be designed such that there will be no flooding up to and including the 1 in 30 year event. The system will also be modelled for the 1 in 100 year event with an allowance of +30% for climate change in order to check the performance of the network and to identify the locations and degree of any flooding. No flooding is predicted to occur in this event.

Previous geotechnical investigations have shown infiltration values ranging between 1.73×10^{-5} and 4.19×10^{-5} m/s immediately to the north of the site. Further site specific testing will be carried out at the detailed design stage however, for the purposes of this assessment, the average value of the range will be taken, $(3.35 \times 10^{-5} \text{ m/s})$.

Lateral infiltration trenches will be provided in an east-west axis in order to intercept water shedding across the parking areas generally in a north-south direction.

The proposed surface water drainage systems are shown on Hydrock drawing no. BAE-HYD-XX-XX-DR-D-2002.

3.8 South Terminal Extension / New Arrivals VCC (Bussing)

3.8.1 Description

The proposal is to extend the southern terminal building and include for additional 'new arrivals' facilities.

3.8.2 Existing Site and Drainage

The area of the site is currently 100% paved being occupied by access roads and pedestrian areas. Runoff from these areas currently drain to existing positive drainage systems and discharge to the east and north of the Terminal building, ultimately draining to soakaways located in the northern surface car parks.

3.8.3 Development Proposals

The proposals will extend the Terminal building footprint by approximately 2,000m² (0.200 ha) to the south and include new bussing units.

3.8.4 Drainage Proposals

As noted above, the area of the proposed extension works is already occupied by impermeable, drained areas. There will therefore be no increase in runoff resulting from the proposed works. It is proposed that the outfall drainage is retained and that connections to the system are amended to suit.

3.9 Taxiway Extensions

3.9.1 Description

The proposal is to provide extensions to existing taxiway areas on the northern and eastern sections of the current runway/taxiway hardstanding areas.

3.9.2 Existing Site and Drainage

The areas over which the extensions will be built are currently grassed. They are immediately adjacent to existing taxiways which shed surface water runoff to the edges of the hardstanding areas. Surface water is collected via infiltration trenches running parallel with the edge of the hardstandings.

3.9.3 Development Proposals

The proposals comprise extension fillets to the edges of the northern taxiway at five separate locations, references T1 to T5 as shown on drawing no BAE-HYD-XX-XX-DR-D-2016 and a further East Taxiway

extension immediately to the east of taxiway Alpha as shown on drawing no. BAE-HYD-XX-XX-DR-D-2015.

The total area of the extensions is $22,546m^2$ (2.255 ha), for the northern taxiway and $7,151m^2$ (0.715 ha) for the east taxiway.

3.9.4 Drainage Proposals

As described above, the existing taxiways currently shed water to the edge of the impermeable areas where the runoff then discharges to existing infiltration trenches.

The development proposals will increase the amount of hardstanding and therefore additional soakaway features will be required in order to cater for the additional run-off. For areas T2, T3 and T4 it is proposed to construct new infiltration trenches which will accommodate both the existing taxiway runoff and that resulting from the extension areas.

The infiltration trenches will be designed such that there will be no flooding up to and including the 1 in 30 year event. The system will also be modelled for the 1 in 100 year event with an allowance of +30% for climate change in order to check the performance of the network and to identify the locations and degree of any flooding.

There are no geotechnical investigations for the runway/taxiway areas due to the proximity of air traffic and therefore the minimum infiltration value of 2.5×10^{-5} the north of the site has been used. Further site specific testing will be carried out at the detailed design stage to confirm the actual values.

The calculations are included in Appendix J and show that flooding will occur in the Q100 +30% event in infiltration trenches T2, T3, T4 and T5 with a volumes of 20³, 27m³, 37m³ and 30m³ respectively. In all cases the flooded volume will naturally fall towards the grassed infield between the taxiway and the runway. The extent of the available area results in negligible depth of standing water even assuming that no natural infiltration will take place across the infield with no adverse impacts on the airfield infrastructure.

The extreme western taxiway extension (T1) and the East taxiway extension will both be served by multiple precast concrete soakaway rings installed in stone filled pits, as shown on drawing nos. BAE-HYD-XX-XX-DR-D-2015 and 2016. These soakaways have been design using the same criteria as for the infiltration trenches discussed above however there is no flooding for the T1 units in the Q100 +30% event and nor for the East extension. These volumes can be readily accommodated in the adjacent grassed areas with no adverse impacts on the airfield infrastructure.

3.10 Walkway to East Pier

3.10.1 Description

The proposal is to provide a new elevated walkway as access to the proposed East Pier.

3.10.2 Existing Site and Drainage

The area of the site is currently 100% paved being occupied by access roads, parking areas, buildings and pedestrian areas. Runoff from these areas currently drain to existing positive drainage systems and discharge to the east of the Terminal building, ultimately draining to soakaways located in the immediate area and the northern surface car parks.

3.10.3 Development Proposals

The proposals will be to provide a covered, elevated walkway form the eastern side of the Terminal Building.

3.10.4 Drainage Proposals

As noted above, the area of the proposed extension works is already occupied by impermeable, drained areas. There will therefore be no increase in runoff resulting from the proposed works. It is proposed that the outfall drainage is retained and that connections to the system are amended to suit.

4. DRAINAGE STRATEGY -FOUL WATER

4.1 Description

The majority of the application elements do not have foul drainage implications. The exception to this are the Terminal Building extension proposals and therefore the following sections relate to this part of the development.

4.2 Existing Site and Drainage

The existing foul water drainage network for the airport is split between two catchments, one to the south of the runway and the other to the north.

The southern catchment is pumped north, and discharges into the northern systems near the northeast corner of the airport site at which point the flows are discharged, via a pump, to an existing public foul sewer in Downside Road at Wessex Water manhole reference ST 51650604. The public sewer is then routed out to the A38 and then flows via the villages of Felton, Winford ultimately discharging to the Wessex Water sewage treatment works (STW) at Chew Stoke, Wessex Water STW reference 13058.

The Environment Agency currently lists the treatment works as being due for an upgrade in 2019 however, Wessex Water have confirmed that the works have now been assessed for investment in their next business plan period (2020-2025) with a low probability of development occurring. No major works are planned at this time. It has also been noted that approximately 60% of the biological load received at the STW is generated by the airport site.

As far as can be established, the foul and surface water drainage systems are separate and therefore rainfall events should not have any effect on flows within the foul systems.

Wessex Water have a current restriction of a maximum discharge rate from the airport site of 12 l/s and, under the previous 10 mppa application, it was established that a storage tank was to be provided in order that peak flows exceeding this value could be retained for discharge at off-peak times.

The existing foul water drainage systems are shown on Hydrock drawing no. BAE-HYD-XX-XX-DR-D-2013.

4.3 Development Proposals

The application proposals which will impact on the foul drainage system are as follows;

- Western extension to main Terminal Building
- Southern extension to Terminal Building
- Removal of existing Administration Block to southern catchment
- Removal of 'Gourmet Gateway' building (anticipated early 2019)

The remainder of the application proposals will not have any foul drainage implications.

4.4 Drainage Proposals

As noted above, increased flows will be generated by the extension of the Terminal Building but will be partially offset by the removal of the Administration Block and the 'Gourmet Gateway' building.

The Administration Building and Fire Station are being relocated to the southern catchment which is served by an existing pumping station. The pumping rate will be maintained at the current value and therefore there will be no material change to flow rates arising from these changes.

The revised flow discharge rates for the proposed development will therefore be as follows;

Main Terminal Building

The planning application is for a passenger capacity of 12 million per annum.

The peak month for passenger numbers is August and previous analysis carried out for the 10 mppa application has established that this is approximately 11% of the yearly capacity. On this basis, the peak number of passengers per day, for the peak month will be,

Foul flows have been calculated using the British Water Code of Practice 'Flows and Loads – 4: Sizing Criteria, Treatment Capacity for Sewage Treatment Systems'. As there is no specific information available for airport passengers, the following activities have been used in the flow calculations and assumptions have been made with regard to the number of passengers who will take part in each activity.

Per Capita Loadings Average	% of Passengers	Passengers/day	Flow litres/person/day	Flow (m³/day)
Toilet Blocks (per use)	75	31,936	10	319
Toilet (urinal) per use	25	10,465	5	53
Full meal	5	2,129	25	53
Snack Bar	15	6,387	15	96
Fast Food	10	4,258	12	51
Bar Drinker	10	4,258	12	51

Assuming a peaking factor of 3, the peak flow rate will be,

$$623 \times 10^3 \times 3 = 21.6 \text{ l/s}$$

24 x 60 x 60

Existing Hotel

The existing hotel in the north-west part of the site is a 201 room 3*/4* facility with anticipated future expansion up to 251 rooms.

Using the British Water Code of Practice 'Flows and Loads – 4: Sizing Criteria, Treatment Capacity for Sewage Treatment Systems', the allowance is 250 litres/head day and assuming a maximum occupancy rate of 2 persons/room and a peaking factor of 3, the flow generated will be,

$$\frac{251 \times 2 \times 250 \times 3}{24 \times 60 \times 60} = 4.4 \text{ l/s}$$

Flows from Southside Pumping Station

Referring to an AECOM Technical Note dated December 2010, the rising main diameter is 100mm and, therefore, assuming that the velocity lies within the recommended range of 0.75 m/s to 1.8 m/s, the minimum and maximum delivery rates will be 5.9 l/s to 14.1 l/s.

An average value if 10 l/s has therefore been assumed.

NB: It should be noted that this will not be a constant rate throughout the whole day but will be a series of peaks, as determined by the fill time of the sump. The AECOM Technical Note dated March 2011 noted an estimated fill time of 43 mins and a pump run time of 2.6 minutes.

Aircraft Foul Systems

Reference has been made to an AECOM Technical Note dated December 2010, which notes that the maximum capacity of the system is 2,000 litres which can be emptied in approximately 10 minutes. This equates to an average flow rate of 3.3l/s.

The AECOM Technical Note also states that this operation happens on average 3.5 times a day therefore this figure is discarded from the following calculations due to the relatively infrequent occurrence.

The total peak discharge rate from the airport will therefore be;

$$21.6 + 4.4 + 10.0 = 36.0 \text{ l/s}.$$

Assume a 3 hour storage period in order to allow discharge outside of peak periods, in accordance with the current operation of the foul system. On this basis, the storage requirement will be the difference between the total inflow and outflow during this period.

Total inflow = $36.0 \times 3 \times 60 \times 60 = 389 \text{m}^3$

1000

Total outflow = $12.0 \times 3 \times 60 \times 60 = 129.6 \text{m}^3$

1000

Therefore storage required = 389 - 129.6 = 259.4m³

Storage already provided under previous scheme = 98m³

Additional storage therefore required under this application, = 259.4 - 98 = 161.4m³.

Due to the volume of storage required, it is likely that some form of chemical dosing will be required in order to prevent issues with septicity and this should be discussed with a suitable specialist contractor.

General

The provision of the new Western and Southern Extensions and the Transport Interchange/MSCP2 will require the diversion of existing foul drainage runs and the provision of new sewers.

The proposed foul water drainage systems are shown on Hydrock drawing no. BAE-HYD-XX-XX-DR-D-2014.

5. CONCLUSIONS

5.1 SURFACE WATER

All existing surface water from the airport site currently discharges to ground via numerous infiltration systems. There is no discharge to public sewers or watercourses.

The proposed redevelopment of various elements of the airport infrastructure will alter existing systems and introduce additional areas of surface water runoff.

The proposed drainage strategy described in this report continues and extends the use of infiltration systems to serve the proposed works. As for the baseline condition, no surface water will be discharged off site.

All infiltration systems have been designed for the 1 in 30 year return period event and tested for the 100 year event plus an allowance for climate change. Under no circumstances will flooding be permitted to occur for the 1 in 30 year event and, where the drainage system has been shown to flood, the volume of water has been determined and the location and depth identified.

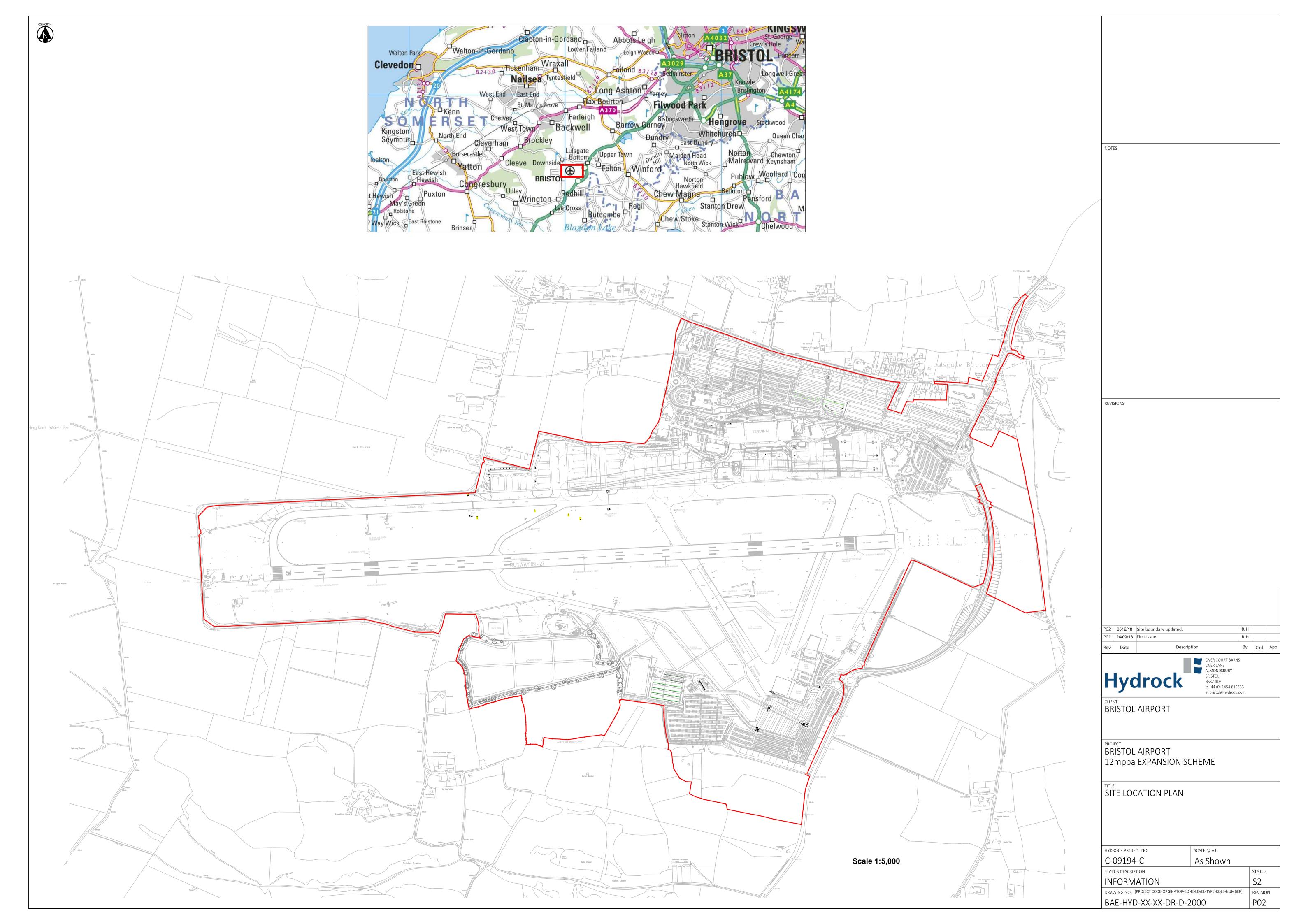
The off-site risk from surface water flooding following the implementation of the proposed development will therefore not be increased.

5.2 Foul Water

All foul drainage from the site drains via both gravity and pumped systems to the north-east corner of the airport site at which point flows are discharged to a public foul sewer in Downside Road.

Wessex Water currently restrict the maximum flow rate from the airport site to 12 l/s. This rate is restricted by the capacity of the Chew Magna sewage treatment works. Wessex Water have confirmed that there is no short-term intention to upgrade these works at present.

The increase of the airport capacity to 12 million passengers per annum will give rise to an increase in foul flows. Given that Wessex Water have no intention to carry out works to the sewage treatment works to increase capacity, then the current 12 l/s restriction will remain in place. In order to cater for the increased flows, it will be necessary to extend the existing on-site storage tanks.

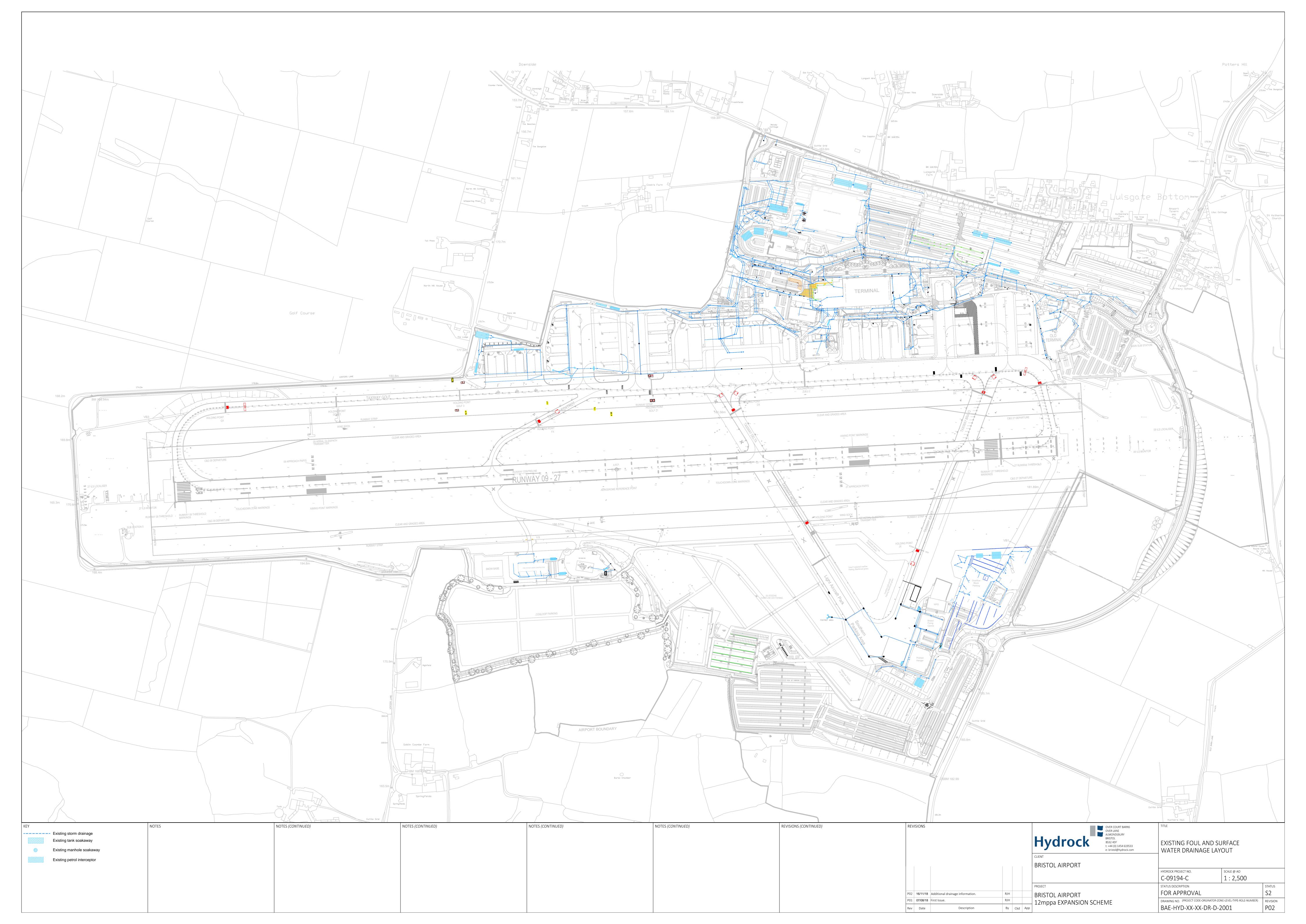

The provision of additional storage and maintaining the current discharge ate from the site will ensure that there is no detrimental impact on the off-site public sewer network.

Hydrock Consultants Limited

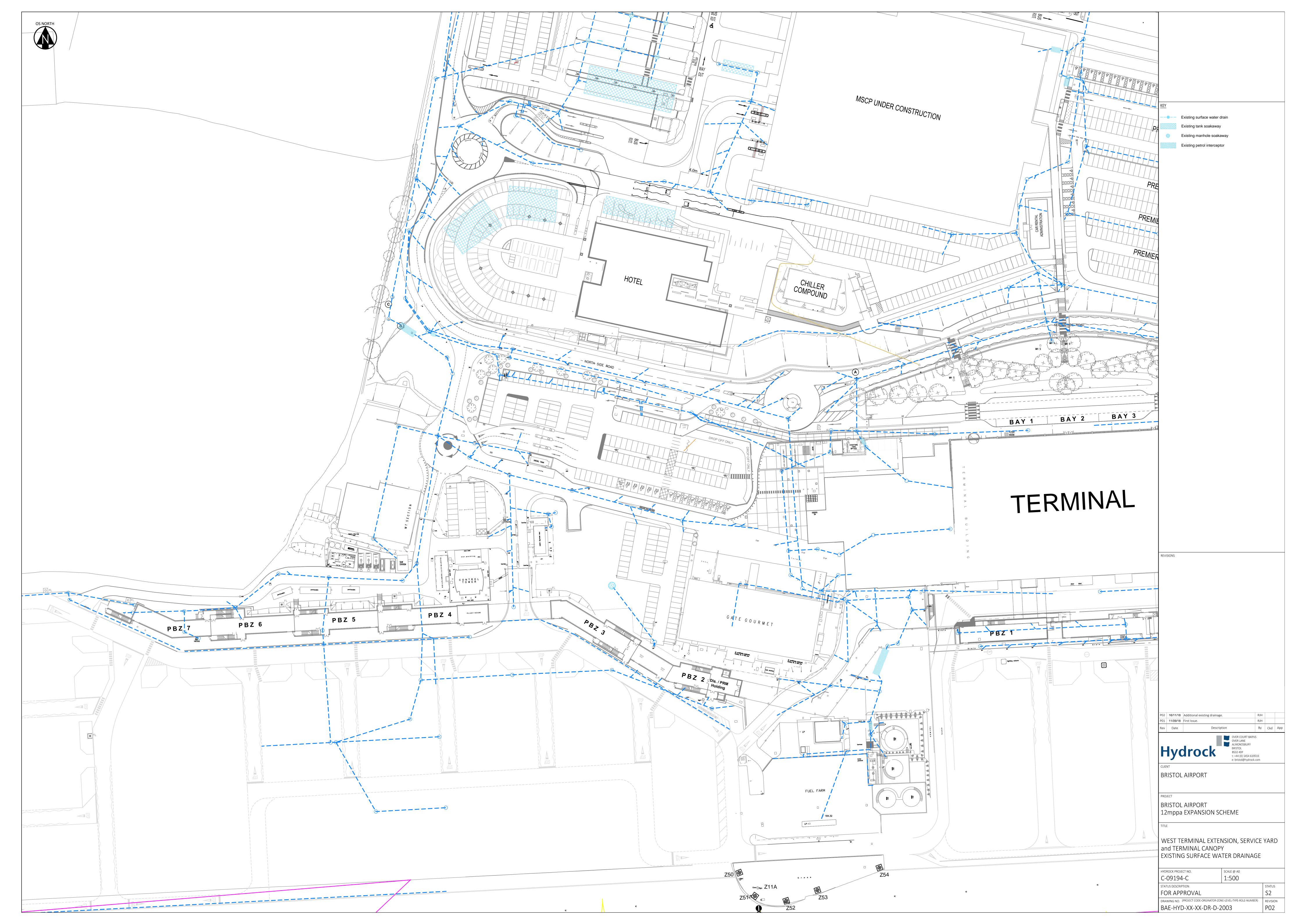
Appendix A

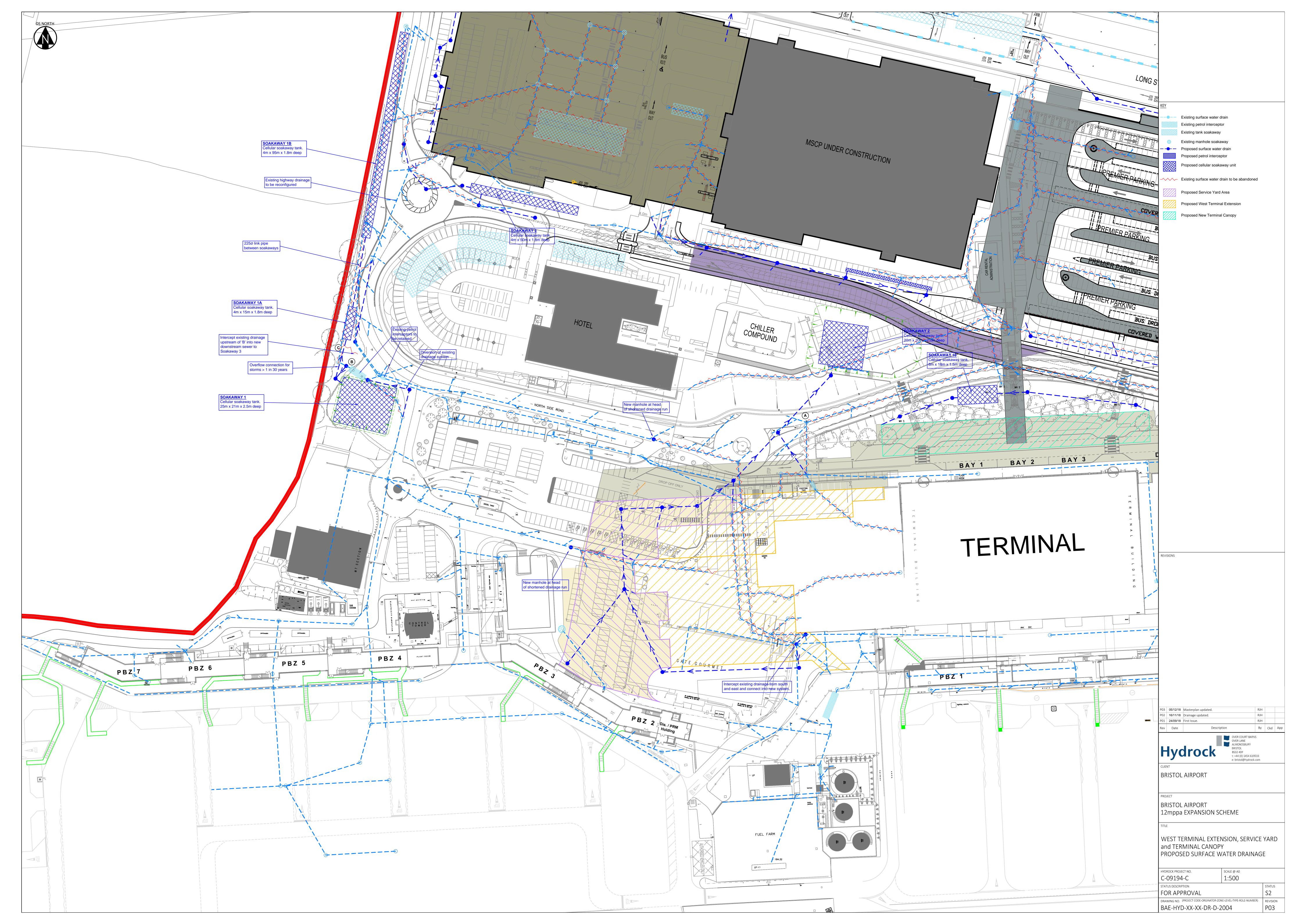

Reference	Title
BAE-HYD-XX-XX-DR-D-2000-P0 2	Site Location Plan

Appendix B – Proposed Masterplan


Reference	Title
T17090-00-100-407-00	Proposed Site Plan

Appendix C – Existing Drainage Plan


Reference	Title
BAE-HYD-XX-XX-DR-D-2001-P02	Existing Drainage Plan



Appendix D – West Terminal Extension, Terminal Canopy and New Service yard

Reference	Title
BAE-HYD-XX-XX-DR-D-2003-P02	Existing Surface Water Drainage
BAE-HYD-XX-XX-DR-D-2004-P03	Proposed Surface Water Plan
Ex West Apron Replan.SRCX	Existing West Apron Replan Soakaway 1 - Q30
Ex West Apron Replan.SRCX	Existing West Apron Replan Soakaway 1 – Q100 +30%
Soak1 Overflow.SRCX	Soakaways 1A & 1B – Q30
Soak1 Overflow.SRCX	Soakaways 1A & 1B – Q100 +30%
Ex Terminal Replan.SRCX	Existing Terminal Replan Soakaway 2 - Q30
Ex Terminal Replan.SRCX	Existing Terminal Replan Soakaway 2 – Q100 +30%
Point C + Ex Hways.SRCX	Soakaway 3 - Q30
Point C + Ex Hways.SRCX	Soakaway 3 – Q100 +30%
Terminal Canopy.SRCX	Terminal Canopy Soakaway 10 - Q30
Terminal Canopy.SRCX	Terminal Canopy Soakaway 10 – Q100 +30%

Hydrock Consultants Ltd	Page 1	
	Bristol Airport 12mpps	
	Existing West Apron Replan	
	Q30	Micro
Date 01/09/2018	Designed by RJH	Drainage
File Ex West Apron Replan.SRCX	Checked by	niailiade
Innovyze	Source Control 2018.1	

Summary of Results for 30 year Return Period

Half Drain Time : 657 minutes.

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event		Level	Depth	${\tt Infiltration}$	Overflow	$\Sigma \ \text{Outflow}$	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
1.5			7 024	0 024	10.6	0 0	10.6	415 0	0.77
	min Sum				12.6	0.0	12.6		O K
	min Sum				13.1	0.0	13.1	550.3	O K
	min Sum				13.7	0.0	13.7	686.1	O K
	min Sum				14.2	0.0	14.2	812.6	O K
	min Sum				14.4	0.0	14.4	873.6	0 K
	min Sum				14.5	0.0	14.5	905.7	0 K
	min Sum				14.6	0.0	14.6	934.3	O K
	min Sun				14.6	0.0	14.6	935.6	O K
	min Sun				14.6	0.0	14.6	924.5	O K
	min Sun				14.5	0.0	14.5	911.2	O K
	min Sun				14.4	0.0	14.4	882.7	O K
	min Sun			1.666	14.2	0.0	14.2	831.1	O K
2160	min Sun	nmer	8.520	1.520	13.9	0.0	13.9	758.1	O K
2880	min Sun	nmer	8.378	1.378	13.7	0.0	13.7	687.3	0 K
4320	min Sun	nmer	8.114	1.114	13.2	0.0	13.2	555.4	O K
5760	min Sun	nmer	7.881	0.881	12.7	0.0	12.7	439.4	O K
7200	min Sun	nmer	7.682	0.682	12.3	0.0	12.3	340.0	O K
8640	min Sun	nmer	7.515	0.515	12.0	0.0	12.0	256.9	O K
10080	min Sun	nmer	7.378	0.378	11.7	0.0	11.7	188.6	O K
15	min Wir	nter	7.941	0.941	12.8	0.0	12.8	469.2	O K
30	min Wir	nter	8.244	1.244	13.4	0.0	13.4	620.6	O K
60	min Wir	nter	8.554	1.554	14.0	0.0	14.0	775.0	O K
120	min Wir	nter	8.848	1.848	14.6	0.0	14.6	921.9	O K
180	min Wir	nter	8.996	1.996	14.9	0.0	14.9	995.7	O K

Storm		Rain	Flooded	Overflow	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
		Summer		0.0	0.0	52
30		Summer	48.833	0.0	0.0	66
60	min	Summer	30.811	0.0	0.0	92
120	min	Summer	18.860	0.0	0.0	148
180	min	Summer	13.992	0.0	0.0	202
240	min	Summer	11.265	0.0	0.0	258
360	min	Summer	8.299	0.0	0.0	370
480	min	Summer	6.674	0.0	0.0	482
600	min	Summer	5.632	0.0	0.0	546
720	min	Summer	4.901	0.0	0.0	608
960	min	Summer	3.933	0.0	0.0	734
1440	min	Summer	2.881	0.0	0.0	1004
2160	min	Summer	2.107	0.0	0.0	1416
2880	min	Summer	1.687	0.0	0.0	1824
4320	min	Summer	1.231	0.0	0.0	2616
5760	min	Summer	0.984	0.0	0.0	3376
7200	min	Summer	0.827	0.0	0.0	4120
8640	min	Summer	0.717	0.0	0.0	4840
10080	min	Summer	0.636	0.0	0.0	5544
15	min	Winter	74.059	0.0	0.0	52
30	min	Winter	48.833	0.0	0.0	66
60	min	Winter	30.811	0.0	0.0	92
120	min	Winter	18.860	0.0	0.0	146
180	min	Winter	13.992	0.0	0.0	202

©1982-2018 Innovyze

Hydrock Consultants Ltd	Page 2	
	Bristol Airport 12mpps	
	Existing West Apron Replan	
	Q30	Mirro
Date 01/09/2018	Designed by RJH	Drainage
File Ex West Apron Replan.SRCX	Checked by	Diamage
Innovyze	Source Control 2018.1	'

Summary of Results for 30 year Return Period

Storm Event		Max	ax Max Max		Max		Max	Max	Status
		Level	Depth	Infiltration	Overflow	Σ	${\tt Outflow}$	Volume	
		(m)	(m)	(1/s)	(1/s)		(1/s)	(m³)	
240	min Winter	9 079	2 079	15.0	0.0		15 0	1037.1	ОК
	min Winter			15.2	0.0			1080.2	O K
	min Winter			15.2	0.0			1092.1	O K
600	min Winter	9.179	2.179	15.2	0.0			1086.8	ОК
720	min Winter	9.148	2.148	15.2	0.0		15.2	1071.5	ОК
960	min Winter	9.075	2.075	15.0	0.0		15.0	1035.1	O K
1440	min Winter	8.927	1.927	14.7	0.0		14.7	961.2	O K
2160	min Winter	8.707	1.707	14.3	0.0		14.3	851.6	O K
2880	min Winter	8.490	1.490	13.9	0.0		13.9	743.0	O K
4320	min Winter	8.092	1.092	13.1	0.0		13.1	544.7	O K
5760	min Winter	7.756	0.756	12.5	0.0		12.5	377.2	O K
7200	min Winter	7.482	0.482	11.9	0.0		11.9	240.2	O K
8640	min Winter	7.266	0.266	11.5	0.0		11.5	132.8	O K
10080	min Winter	7.114	0.114	11.2	0.0		11.2	56.7	O K

Storm		Rain Flooded		Overflow	Time-Peak		
Event		(mm/hr)	Volume	Volume	(mins)		
			(m³)	(m³)			
	240	min	Winter	11.265	0.0	0.0	256
	360	min	Winter	8.299	0.0	0.0	366
	480	min	Winter	6.674	0.0	0.0	478
	600	min	Winter	5.632	0.0	0.0	584
	720	min	Winter	4.901	0.0	0.0	684
	960	min	Winter	3.933	0.0	0.0	776
	1440	min	Winter	2.881	0.0	0.0	1084
	2160	min	Winter	2.107	0.0	0.0	1536
	2880	min	Winter	1.687	0.0	0.0	1972
	4320	min	Winter	1.231	0.0	0.0	2792
	5760	min	Winter	0.984	0.0	0.0	3568
	7200	min	Winter	0.827	0.0	0.0	4272
	8640	min	Winter	0.717	0.0	0.0	4936
	10080	min	Winter	0.636	0.0	0.0	5472

Hydrock Consultants Ltd		Page 3
	Bristol Airport 12mpps	
	Existing West Apron Replan	
	Q30	Micro
Date 01/09/2018	Designed by RJH	Drainage
File Ex West Apron Replan.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1	,

 Return
 Reduction
 Region
 England and Wales
 Winter Storms
 Yes

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

 Ratio R
 0.370
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +0

Time Area Diagram

Total Area (ha) 3.234

Time	(mins)	Area												
From:	To:	(ha)												
0	4	0.323	8	12	0.323	16	20	0.323	24	28	0.324	32	36	0.324
4	8	0.323	12	16	0.323	20	24	0.323	28	32	0.324	36	40	0.324

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

Hydrock Consultants Ltd		Page 4
	Bristol Airport 12mpps	
	Existing West Apron Replan	
	Q30	Micro
Date 01/09/2018	Designed by RJH	Drainage
File Ex West Apron Replan.SRCX	Checked by	Diamage
Innovyze	Source Control 2018.1	

Storage is Online Cover Level (m) 11.000

Cellular Storage Structure

Invert Level (m) 7.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.15100 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.15100

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000 525.0 525.0 2.500 525.0 755.0

Pipe Overflow Control

Diameter (m) 0.300 Roughness k (mm) 0.600 Upstream Invert Level (m) 9.200 Slope (1:X) 100.0 Entry Loss Coefficient 0.500 Length (m) 50.000 Coefficient of Contraction 0.600

Hydrock Consultants Ltd		Page 1
	Bristol Airport 12mpps	
	Existing West Apron Replan	
	Q100 +30%	Micro
Date 12/11/2018	Designed by RJH	
File Ex West Apron Replan.SRCX	Checked by	Drainage
Innovyze	Source Control 2018.1	'

Half Drain Time : 803 minutes.

	Storm	n	Max	Max	Max	Max	Max	Max	Status
	Event	:	Level	Depth	${\tt Infiltration}$	Overflow	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min	Summer	8.445	1 115	13.8	0.0	13.8	720.8	ОК
		Summer			14.7	0.0	14.7		0 K
		Summer	9.376		15.6	25.7		1184.9	0 K
			10.269		15.8	151.0		1264.2	0 K
			11.003		15.8	190.0		1268.4	FLOOD
			11.003		15.8	190.0		1267.9	FLOOD
			11.003		15.8	190.0		1268.0	FLOOD
			10.736		15.8	176.8			Flood Risk
			10.418		15.8	159.7		1264.3	O K
		Summer			15.8	126.0		1263.8	0 K
		Summer			15.8	93.7		1263.5	0 K
		Summer	9.490		15.8	55.3		1242.1	0 K
		Summer	9.424		15.7	36.4		1208.8	0 K
		Summer	9.377		15.6	26.1		1185.5	0 K
		Summer	9.316		15.5	10.9		1155.0	0 K
		Summer	9.213		15.3	0.2		1103.5	0 K
		Summer	8.927		14.7	0.0	14.7		0 K
8640	min :	Summer	8.670	1.670	14.2	0.0	14.2		ОК
10080	min :	Summer	8.443	1.443	13.8	0.0	13.8	719.6	O K
15	min N	Winter	8.626	1.626	14.1	0.0	14.1	811.0	ОК
30	min N	Winter	9.166	2.166	15.2	0.0	15.2	1080.3	O K
60	min N	Winter	10.962	3.962	15.8	188.0	203.8	1264.9	Flood Risk
			11.051		15.8	192.2	208.1	1316.0	FLOOD
180	min N	Winter	11.051	4.051	15.8	192.2	208.0	1315.4	FLOOD

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
15	min	Summer	124.836	0.0	0.0	53
30	min	Summer	83.061	0.0	0.0	67
60	min	Summer	52.662	0.0	51.2	88
120	min	Summer	32.210	0.0	278.9	110
180	min	Summer	23.799	4.9	406.0	136
240	min	Summer	19.065	4.4	482.3	166
360	min	Summer	13.962	4.5	579.6	228
480	min	Summer	11.178	0.0	629.0	292
600	min	Summer	9.399	0.0	651.9	356
720	min	Summer	8.153	0.0	657.7	420
960	min	Summer	6.510	0.0	638.1	558
1440	min	Summer	4.731	0.0	552.1	838
2160	min	Summer	3.432	0.0	433.3	1244
2880	min	Summer	2.730	0.0	332.4	1648
4320	min	Summer	1.973	0.0	150.0	2524
5760	min	Summer	1.566	0.0	0.8	3528
7200	min	Summer	1.308	0.0	0.0	4328
8640	min	Summer	1.129	0.0	0.0	5096
10080	min	Summer	0.998	0.0	0.0	5856
15	min	Winter	124.836	0.0	0.0	53
30	min	Winter	83.061	0.0	0.0	67
60	min	Winter	52.662	0.0	186.6	76
120	min	Winter	32.210	52.5	465.3	110
180	min	Winter	23.799	51.9	612.8	142

Hydrock Consultants Ltd	Page 2	
	Bristol Airport 12mpps	
	Existing West Apron Replan	
	Q100 +30%	Mirro Mirro
Date 12/11/2018	Designed by RJH	Drainage
File Ex West Apron Replan.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1	

	Storm	n	Max	Max	Max	Max		Max	Max	Status
	Event	t	Level	Depth	${\tt Infiltration}$	Overflow	Σ	${\tt Outflow}$	Volume	
			(m)	(m)	(1/s)	(1/s)		(1/s)	(m³)	
240	min	Winter	11.043	4.043	15.8	191.9		207.7	1308.3	FLOOD
360	min	Winter	11.013	4.013	15.8	190.4		206.3	1277.5	FLOOD
480	min	Winter	11.003	4.003	15.8	190.0		205.8	1268.0	FLOOD
600	min	Winter	10.254	3.254	15.8	150.2		166.0	1264.2	O K
720	min	Winter	9.995	2.995	15.8	133.7		149.5	1263.9	O K
960	min	Winter	9.661	2.661	15.8	104.8		120.6	1263.6	O K
1440	min	Winter	9.508	2.508	15.8	60.8		76.7	1250.3	O K
2160	min	Winter	9.437	2.437	15.7	39.4		55.1	1215.5	O K
2880	min	Winter	9.386	2.386	15.6	28.1		43.7	1190.1	O K
4320	min	Winter	9.329	2.329	15.5	13.2		28.7	1161.7	O K
5760	min	Winter	9.252	2.252	15.4	2.3		17.6	1123.0	O K
7200	min	Winter	8.882	1.882	14.6	0.0		14.6	938.7	O K
8640	min	Winter	8.525	1.525	14.0	0.0		14.0	760.4	O K
10080	min	Winter	8.213	1.213	13.4	0.0		13.4	604.9	O K

	Stor	m	Rain	Flooded	Overflow	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
240	min	Winter	19.065	44.8	703.0	174
360	min	Winter	13.962	14.0	822.9	230
480	min	Winter	11.178	4.5	890.7	284
600	min	Winter	9.399	0.0	927.2	346
720	min	Winter	8.153	0.0	944.4	410
960	min	Winter	6.510	0.0	942.2	544
1440	min	Winter	4.731	0.0	860.9	836
2160	min	Winter	3.432	0.0	695.4	1248
2880	min	Winter	2.730	0.0	551.2	1660
4320	min	Winter	1.973	0.0	277.4	2568
5760	min	Winter	1.566	0.0	32.5	3664
7200	min	Winter	1.308	0.0	0.0	4576
8640	min	Winter	1.129	0.0	0.0	5376
10080	min	Winter	0.998	0.0	0.0	6152

Hydrock Consultants Ltd	Page 3	
	Bristol Airport 12mpps	
	Existing West Apron Replan	
	Q100 +30%	Micro
Date 12/11/2018	Designed by RJH	Drainage
File Ex West Apron Replan.SRCX	Checked by	Diamage
Innovyze	Source Control 2018.1	

 Return
 Reinfall Model
 FSR
 Winter Storms
 Yes

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

 Ratio R
 0.370
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +30

Time Area Diagram

Total Area (ha) 3.234

Time	(mins)	Area												
From:	To:	(ha)												
0	4	0.323	8	12	0.323	16	20	0.323	24	28	0.324	32	36	0.324
4	8	0.323	12	16	0.323	20	24	0.323	28	32	0.324	36	40	0.324

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

Hydrock Consultants Ltd		Page 4
	Bristol Airport 12mpps	
	Existing West Apron Replan	
	Q100 +30%	Micro
Date 12/11/2018	Designed by RJH	Drainage
File Ex West Apron Replan.SRCX	Checked by	Diamage
Innovyze	Source Control 2018.1	'

Storage is Online Cover Level (m) 11.000

Cellular Storage Structure

Invert Level (m) 7.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.15100 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.15100

Depth (m) Area	(m²)	Inf. Area ((m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.0	00	525.0	52	25.0	2.	500	5	25.0		7	55.0	2.	600		0.0		7	55.0

Pipe Overflow Control

Diameter (m) 0.300 Roughness k (mm) 0.600 Upstream Invert Level (m) 9.200 Slope (1:X) 100.0 Entry Loss Coefficient 0.500 Length (m) 50.000 Coefficient of Contraction 0.600

Hydrock Consultants Ltd	Page 1	
	Bristol Airport 12mpps Soakaway 1A & 1B - Q30 Overflow from Soakaway 1	Mirro
Date 01/09/2018 File SOAK1 OVERFLOW.SRCX	Designed by RJH Checked by	Drainage
Innovyze	Source Control 2018.1	,

Half Drain Time : 418 minutes.

Storm			Max	Max	Max	Max	Status
Event		Level	Depth	${\tt Infiltration}$	Volume		
			(m)	(m)	(1/s)	(m³)	
		Summer				652.9	
		Summer					
		Summer				652.9	
		Summer				652.9	
180	min	Summer	8.562	1.562	16.7	652.9	O K
240	min	Summer	8.562	1.562	16.7	652.9	O K
360	min	Summer	8.562	1.562	16.7	652.9	O K
480	min	Summer	8.562	1.562	16.7	652.9	O K
600	min	Summer	8.562	1.562	16.7	652.9	O K
720	min	Summer	8.562	1.562	16.7	652.9	O K
960	min	Summer	8.562	1.562	16.7	652.9	O K
1440	min	Summer	8.562	1.562	16.7	652.9	O K
2160	min	Summer	8.587	1.587	16.8	663.6	O K
2880	min	Summer	8.587	1.587	16.8	663.6	O K
4320	min	Summer	8.587	1.587	16.8	663.6	ОК
5760	min	Summer	8.532	1.532	16.6	640.2	O K
7200	min	Summer	8.532	1.532	16.6	640.2	O K
8640	min	Summer	8.532	1.532	16.6	640.2	O K
10080	min	Summer	8.532	1.532	16.6	640.2	O K
15	min	Winter	8.562	1.562	16.7	652.9	ОК
30	min	Winter	8.562	1.562	16.7	652.9	ОК
60	min	Winter	8.562	1.562	16.7	652.9	ОК
120	min	Winter	8.562	1.562		652.9	ОК
180	min	Winter	8.562	1.562	16.7	652.9	O K

	Stor	m	Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	74.059	0.0	226
30	min	Summer	48.833	0.0	226
60	min	Summer	30.811	0.0	226
120	min	Summer	18.860	0.0	226
180	min	Summer	13.992	0.0	226
240	min	Summer	11.265	0.0	226
360	min	Summer	8.299	0.0	226
480	min	Summer	6.674	0.0	226
600	min	Summer	5.632	0.0	226
720	min	Summer	4.901	0.0	226
960	min	Summer	3.933	0.0	226
1440	min	Summer	2.881	0.0	226
2160	min	Summer	2.107	0.0	228
2880	min	Summer	1.687	0.0	228
4320	min	Summer	1.231	0.0	228
5760	min	Summer	0.984	0.0	224
7200	min	Summer	0.827	0.0	224
8640	min	Summer	0.717	0.0	224
10080	min	Summer	0.636	0.0	224
15	min	Winter	74.059	0.0	226
30	min	Winter	48.833	0.0	226
60	min	Winter	30.811	0.0	226
120	min	Winter	18.860	0.0	226
180	min	Winter	13.992	0.0	226

Hydrock Consultants Ltd	Page 2	
	Bristol Airport 12mpps	
	Soakaway 1A & 1B - Q30	
	Overflow from Soakaway 1	Micro
Date 01/09/2018	Designed by RJH	Drainage
File SOAK1 OVERFLOW.SRCX	Checked by	Diamage
Innovyze	Source Control 2018.1	,

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
240	min	Winter	8.562	1.562	16.7	652.9	O K
360	min	Winter	8.562	1.562	16.7	652.9	O K
480	min	Winter	8.562	1.562	16.7	652.9	ОК
600	min	Winter	8.562	1.562	16.7	652.9	O K
720	min	Winter	8.562	1.562	16.7	652.9	O K
960	min	Winter	8.562	1.562	16.7	652.9	O K
1440	min	Winter	8.562	1.562	16.7	652.9	O K
2160	min	Winter	8.587	1.587	16.8	663.6	O K
2880	min	Winter	8.587	1.587	16.8	663.6	O K
4320	min	Winter	8.587	1.587	16.8	663.6	O K
5760	min	Winter	8.532	1.532	16.6	640.2	O K
7200	min	Winter	8.532	1.532	16.6	640.2	O K
8640	min	Winter	8.532	1.532	16.6	640.2	O K
10080	min	Winter	8.532	1.532	16.6	640.2	O K

	Stor	m	Rain	Flooded	Time-Peak
	Event			Volume	(mins)
				(m³)	
240	min	Winter	11.265	0.0	226
360	min	Winter	8.299	0.0	226
480	min	Winter	6.674	0.0	226
600	min	Winter	5.632	0.0	226
720	min	Winter	4.901	0.0	226
960	min	Winter	3.933	0.0	226
1440	min	Winter	2.881	0.0	226
2160	min	Winter	2.107	0.0	228
2880	min	Winter	1.687	0.0	228
4320	min	Winter	1.231	0.0	228
5760	min	Winter	0.984	0.0	224
7200	min	Winter	0.827	0.0	224
8640	min	Winter	0.717	0.0	224
10080	min	Winter	0.636	0.0	224

Hydrock Consultants Ltd					
	Bristol Airport 12mpps				
	Soakaway 1A & 1B - Q30				
	Overflow from Soakaway 1	Micro			
Date 01/09/2018	Designed by RJH	Drainage			
File SOAK1 OVERFLOW.SRCX	Checked by	nialiade			
Innovyze	Source Control 2018.1				

 Return
 Reduction
 Region
 England and Wales
 Winter Storms
 Yes

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

 Ratio R
 0.370
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +0

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha) 0.000

Hydrock Consultants Ltd	Page 4	
	Bristol Airport 12mpps	
	Soakaway 1A & 1B - Q30	
	Overflow from Soakaway 1	Micro
Date 01/09/2018	Designed by RJH	Drainage
File SOAK1 OVERFLOW.SRCX	Checked by	nialiade
Innovyze	Source Control 2018.1	

Storage is Online Cover Level (m) 11.000

Cellular Storage Structure

Invert Level (m) 7.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.15100 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.15100

Depth	(m) A	rea (m²)	Inf. Area (m²)	Depth (m)	Area (m²)	Inf. Area (m²)	Depth (m)	Area (m²)	Inf. Area (m²)
0.0	000	440.0	440.0	1.800	440.0	850.4	1.900	0.0	850.4

Hydrock Consultants Ltd	Page 1	
	Bristol Airport 12mpps Soakaway 1A & 1B - Q100+30% Overflow from Soakaway 1	Micro
Date 12/11/2018	Designed by RJH	Drainage
File Soakl Overflow.SRCX Innovyze	Checked by Source Control 2018.1	

Half Drain Time : 418 minutes.

Storm			Max	Max	Max	Max	Status
Event		Level	Depth	Infiltration	Volume		
			(m)	(m)	(1/s)	(m³)	
1 5	min	Summer	0 562	1 560	16.7	652.9	ОК
		Summer					
		Summer					
		Summer					
180		Summer			16.7		
		Summer					
360	min	Summer	8.562	1.562	16.7	652.9	O K
480	min	Summer	8.562	1.562	16.7	652.9	O K
600	min	Summer	8.562	1.562	16.7	652.9	O K
720	min	Summer	8.562	1.562	16.7	652.9	O K
960	min	Summer	8.562	1.562	16.7	652.9	O K
1440	min	Summer	8.562	1.562	16.7	652.9	O K
2160	min	Summer	8.587	1.587	16.8	663.6	O K
2880	min	Summer	8.587	1.587	16.8	663.6	O K
4320	min	Summer	8.587	1.587	16.8	663.6	O K
5760	min	Summer	8.532	1.532	16.6	640.2	ОК
7200	min	Summer	8.532	1.532	16.6	640.2	ОК
8640	min	Summer	8.532	1.532	16.6	640.2	ОК
10080	min	Summer	8.532	1.532	16.6	640.2	ОК
15	min	Winter	8.562	1.562	16.7	652.9	ОК
30	min	Winter	8.562	1.562	16.7	652.9	ОК
60	min	Winter	8.562	1.562	16.7	652.9	ОК
120	min	Winter	8.562	1.562	16.7		
		Winter			16.7		O K

Storm			Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	124.836	0.0	226
30	min	Summer	83.061	0.0	226
60	min	Summer	52.662	0.0	226
120	min	Summer	32.210	0.0	226
180	min	Summer	23.799	0.0	226
240	min	Summer	19.065	0.0	226
360	min	Summer	13.962	0.0	226
480	min	Summer	11.178	0.0	226
600	min	Summer	9.399	0.0	226
720	min	Summer	8.153	0.0	226
960	min	Summer	6.510	0.0	226
1440	min	Summer	4.731	0.0	226
2160	min	Summer	3.432	0.0	228
2880	min	Summer	2.730	0.0	228
4320	min	Summer	1.973	0.0	228
5760	min	Summer	1.566	0.0	224
7200	min	Summer	1.308	0.0	224
8640	min	Summer	1.129	0.0	224
10080	min	Summer	0.998	0.0	224
15	min	Winter	124.836	0.0	226
30	min	Winter	83.061	0.0	226
60	min	Winter	52.662	0.0	226
120	min	Winter	32.210	0.0	226
180	min	Winter	23.799	0.0	226

Hydrock Consultants Ltd		Page 2
	Bristol Airport 12mpps	
	Soakaway 1A & 1B - Q100+30%	
	Overflow from Soakaway 1	Micro
Date 12/11/2018	Designed by RJH	Drainage
File Soak1 Overflow.SRCX	Checked by	Diamade
Innovyze	Source Control 2018.1	•

Storm		Max	Max	Max	Max	Status	
	Event		Level	Depth	Infiltration	Volume	
			(m)	(m)	(1/s)	(m³)	
240	min	Winter	8.562	1.562	16.7	652.9	O K
360	min	Winter	8.562	1.562	16.7	652.9	O K
480	min	Winter	8.562	1.562	16.7	652.9	O K
600	min	Winter	8.562	1.562	16.7	652.9	O K
720	min	Winter	8.562	1.562	16.7	652.9	O K
960	min	Winter	8.562	1.562	16.7	652.9	O K
1440	min	Winter	8.562	1.562	16.7	652.9	O K
2160	min	Winter	8.587	1.587	16.8	663.6	O K
2880	min	Winter	8.587	1.587	16.8	663.6	O K
4320	min	Winter	8.587	1.587	16.8	663.6	O K
5760	min	Winter	8.532	1.532	16.6	640.2	O K
7200	min	Winter	8.532	1.532	16.6	640.2	O K
8640	min	Winter	8.532	1.532	16.6	640.2	O K
10080	min	Winter	8.532	1.532	16.6	640.2	O K

Storm Event			Rain (mm/hr)		Time-Peak (mins)
240	min	Winter	19.065	0.0	226
360	min	Winter	13.962	0.0	226
480	min	Winter	11.178	0.0	226
600	min	Winter	9.399	0.0	226
720	min	Winter	8.153	0.0	226
960	min	Winter	6.510	0.0	226
1440	min	Winter	4.731	0.0	226
2160	min	Winter	3.432	0.0	228
2880	min	Winter	2.730	0.0	228
4320	min	Winter	1.973	0.0	228
5760	min	Winter	1.566	0.0	224
7200	min	Winter	1.308	0.0	224
8640	min	Winter	1.129	0.0	224
10080	min	Winter	0.998	0.0	224

Hydrock Consultants Ltd		Page 3
	Bristol Airport 12mpps	
	Soakaway 1A & 1B - Q100+30%	
	Overflow from Soakaway 1	Mirro
Date 12/11/2018	Designed by RJH	Drainage
File Soak1 Overflow.SRCX	Checked by	nialiade
Innovyze	Source Control 2018.1	'

 Return
 Reinfall Model
 FSR
 Winter Storms
 Yes

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

 Ratio R
 0.370
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +30

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha) 0.000

Hydrock Consultants Ltd		Page 4
	Bristol Airport 12mpps	
	Soakaway 1A & 1B - Q100+30%	
	Overflow from Soakaway 1	Micro
Date 12/11/2018	Designed by RJH	Drainage
File Soak1 Overflow.SRCX	Checked by	mairiage
Innovyze	Source Control 2018.1	'

Storage is Online Cover Level (m) 11.000

Cellular Storage Structure

Invert Level (m) 7.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.15100 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.15100

Depth	(m)	Area (m	n²) Inf.	Area (m²)	Depth	(m)	Area ((m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)	
0.0	000	440	0.0	440.0	1.	800	44	10.0		8	50.4	1.	900		0.0		8	50.4	

Hydrock Consultants Ltd	Page 1	
	Bristol Airport 12mpps	
	Existing Terminal Replan	
	Q30	Mirro
Date 01/09/2018	Designed by RJH	Drainage
File Ex Terminal Replan.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1	·

Half Drain Time : 398 minutes.

Storm			Max	Max	Max	Max	Status
	Event			Depth	${\tt Infiltration}$	Volume	
			(m)	(m)	(1/s)	(m³)	
		Summer			9.5		O K
		Summer			9.9		O K
		Summer			10.3		
120	min	Summer	8.041	1.041	10.6	395.5	O K
180	min	Summer	8.100	1.100	10.7	418.1	O K
240	min	Summer	8.121	1.121	10.7	425.8	O K
360	min	Summer	8.116	1.116	10.7	424.3	O K
480	min	Summer	8.095	1.095	10.7	416.0	O K
600	min	Summer	8.070	1.070	10.6	406.5	O K
720	min	Summer	8.045	1.045	10.6	397.2	O K
960	min	Summer	7.997	0.997	10.5	379.0	O K
1440	min	Summer	7.903	0.903	10.3	343.3	O K
2160	min	Summer	7.768	0.768	10.0	291.8	O K
2880	min	Summer	7.643	0.643	9.7	244.3	O K
4320	min	Summer	7.432	0.432	9.3	164.2	O K
5760	min	Summer	7.274	0.274	9.0	104.0	O K
7200	min	Summer	7.161	0.161	8.7	61.0	O K
8640	min	Summer	7.088	0.088	8.6	33.5	O K
10080	min	Summer	7.052	0.052	8.5	19.7	O K
15	min	Winter	7.612	0.612	9.7	232.7	O K
30	min	Winter	7.812	0.812	10.1	308.6	O K
60	min	Winter	8.010	1.010	10.5		O K
120	min	Winter	8.186	1.186	10.9	450.8	O K
180	min	Winter	8.263	1.263	11.0	479.8	O K

	Stor Even		Rain (mm/hr)		Time-Peak (mins)
15	min	Summer	74.059	0.0	51
30	min	Summer	48.833	0.0	64
60	min	Summer	30.811	0.0	90
120	min	Summer	18.860	0.0	142
180	min	Summer	13.992	0.0	194
240	min	Summer	11.265	0.0	248
360	min	Summer	8.299	0.0	342
480	min	Summer	6.674	0.0	402
600	min	Summer	5.632	0.0	466
720	min	Summer	4.901	0.0	532
960	min	Summer	3.933	0.0	670
1440	min	Summer	2.881	0.0	944
2160	min	Summer	2.107	0.0	1348
2880	min	Summer	1.687	0.0	1736
4320	min	Summer	1.231	0.0	2480
5760	min	Summer	0.984	0.0	3184
7200	min	Summer	0.827	0.0	3848
8640	min	Summer	0.717	0.0	4504
10080	min	Summer	0.636	0.0	5144
15	min	Winter	74.059	0.0	52
30	min	Winter	48.833	0.0	64
60	min	Winter	30.811	0.0	90
120	min	Winter	18.860	0.0	142
180	min	Winter	13.992	0.0	196

Hydrock Consultants Ltd	Page 2	
	Bristol Airport 12mpps	
	Existing Terminal Replan	
	Q30	Micro
Date 01/09/2018	Designed by RJH	Drainage
File Ex Terminal Replan.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1	'

	Storm Event			Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
240	min	Winter	8.295	1.295	11.1	492.2	O K
360	min	Winter	8.308	1.308	11.1	496.9	O K
480	min	Winter	8.282	1.282	11.1	487.0	O K
600	min	Winter	8.250	1.250	11.0	475.0	O K
720	min	Winter	8.217	1.217	10.9	462.3	O K
960	min	Winter	8.148	1.148	10.8	436.1	O K
1440	min	Winter	8.004	1.004	10.5	381.7	O K
2160	min	Winter	7.796	0.796	10.1	302.6	O K
2880	min	Winter	7.610	0.610	9.7	231.8	O K
4320	min	Winter	7.311	0.311	9.0	118.3	O K
5760	min	Winter	7.113	0.113	8.6	42.9	O K
7200	min	Winter	7.048	0.048	8.1	18.1	O K
8640	min	Winter	7.041	0.041	7.0	15.6	O K
10080	min	Winter	7.037	0.037	6.2	13.9	O K

	Stor	m	Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
240	min	Winter	11.265	0.0	250
360	min	Winter	8.299	0.0	356
480	min	Winter	6.674	0.0	452
600	min	Winter	5.632	0.0	494
720	min	Winter	4.901	0.0	570
960	min	Winter	3.933	0.0	724
1440	min	Winter	2.881	0.0	1024
2160	min	Winter	2.107	0.0	1448
2880	min	Winter	1.687	0.0	1848
4320	min	Winter	1.231	0.0	2580
5760	min	Winter	0.984	0.0	3192
7200	min	Winter	0.827	0.0	3648
8640	min	Winter	0.717	0.0	4400
10080	min	Winter	0.636	0.0	5136

Hydrock Consultants Ltd	Page 3	
	Bristol Airport 12mpps	
	Existing Terminal Replan	
	Q30	Micro
Date 01/09/2018	Designed by RJH	Drainage
File Ex Terminal Replan.SRCX	Checked by	Digitiade
Innovyze	Source Control 2018.1	•

 Return
 Reduction
 Region
 England and Wales
 Winter Storms
 Yes

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

 Ratio R
 0.370
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +0

Time Area Diagram

Total Area (ha) 1.656

Time	(mins)	Area												
From:	To:	(ha)												
0	4	0 166		12	0 166	16	2.0	0 166	24	2.0	0.165	32	2.6	0 165
U	4	0.100	8	12	0.100	Τρ	20	0.100	24	28	0.165	32	36	0.165
4	8	0.166	12	16	0.166	20	24	0.166	28	32	0.165	36	40	0.165

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

Hydrock Consultants Ltd						
•	Bristol Airport 12mpps					
	Existing Terminal Replan					
	Q30	Micro				
Date 01/09/2018	Designed by RJH					
File Ex Terminal Replan.SRCX	Checked by	Drainage				
Innovyze	Source Control 2018.1	'				

Storage is Online Cover Level (m) 10.000

Cellular Storage Structure

Invert Level (m) 7.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.15100 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.15100

Depth	(m) <i>I</i>	Area (m²)	Inf. Are	a (m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.0	000	400.0		400.0	2.	000	4	00.0		6	00.0	2.	100		0.0		6	500.0

Hydrock Consultants Ltd	Page 1	
	Bristol Airport 12mpps	
	Existing Terminal Replan	
	Q100 +30%	Mirro
Date 12/11/2018	Designed by RJH	· · · · · · ·
File Ex Terminal Replan.SRCX	Checked by	Drainage
Innovyze	Source Control 2018.1	,

Half Drain Time : 682 minutes.

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Infiltration	Volume	
			(m)	(m)	(1/s)	(m³)	
		Summer			10.4		O K
			8.267		11.0		O K
60	min	Summer	8.587	1.587	11.7	603.2	O K
120	min	Summer	8.880	1.880	12.3	714.5	O K
180	min	Summer	9.018	2.018	12.6	765.6	O K
240	min	Summer	10.017	3.017	12.6	790.5	FLOOD
360	min	Summer	10.039	3.039	12.6	812.4	FLOOD
480	min	Summer	10.038	3.038	12.6	811.2	FLOOD
600	min	Summer	10.026	3.026	12.6	799.7	FLOOD
720	min	Summer	10.013	3.013	12.6	786.7	FLOOD
960	min	Summer	8.996	1.996	12.6	758.4	O K
1440	min	Summer	8.863	1.863	12.3	707.9	O K
2160	min	Summer	8.687	1.687	11.9	640.9	O K
2880	min	Summer	8.523	1.523	11.6	578.8	O K
4320	min	Summer	8.229	1.229	11.0	467.0	ОК
5760	min	Summer	7.977	0.977	10.4	371.1	ОК
7200	min	Summer	7.763	0.763	10.0	290.0	ОК
8640	min	Summer	7.585	0.585	9.6	222.4	ОК
10080	min	Summer	7.439	0.439	9.3	166.9	O K
15	min	Winter	8.071	1.071	10.6	406.9	O K
30	min	Winter	8.428	1.428	11.4	542.6	ОК
60	min	Winter	8.791	1.791	12.1	680.8	ОК
120	min	Winter	10.036	3.036	12.6		FLOOD
180	min	Winter	10.099	3.099	12.6	872.5	FLOOD

Storm			Rain	Flooded	Time-Peak
Event		(mm/hr)	Volume	(mins)	
				(m³)	
15	min	Summer	124.836	0.0	52
30	min	Summer	83.061	0.0	66
60	min	Summer	52.662	0.0	92
120	min	Summer	32.210	0.0	148
180	min	Summer	23.799	0.0	202
240	min	Summer	19.065	17.8	258
360	min	Summer	13.962	39.7	370
480	min	Summer	11.178	38.5	482
600	min	Summer	9.399	27.1	542
720	min	Summer	8.153	14.0	602
960	min	Summer	6.510	0.0	726
1440	min	Summer	4.731	0.0	1000
2160	min	Summer	3.432	0.0	1412
2880	min	Summer	2.730	0.0	1820
4320	min	Summer	1.973	0.0	2612
5760	min	Summer	1.566	0.0	3368
7200	min	Summer	1.308	0.0	4120
8640	min	Summer	1.129	0.0	4848
10080	min	Summer	0.998	0.0	5552
15	min	Winter	124.836	0.0	53
30	min	Winter	83.061	0.0	66
60	min	Winter	52.662	0.0	92
120	min	Winter	32.210	37.2	146
180	min	Winter	23.799	99.8	202

Hydrock Consultants Ltd						
	Bristol Airport 12mpps					
	Existing Terminal Replan					
	Q100 +30%	Micro Micro				
Date 12/11/2018	Designed by RJH					
File Ex Terminal Replan.SRCX	Checked by	Drainage				
Innovyze	Source Control 2018.1	,				

	Stor		Max Level	Max	Max Infiltration	Max	Status
	Lven	·	(m)	(m)	(1/s)	(m³)	
240	min	Winter	10.132	3.132	12.6	905.4	FLOOD
360	min	Winter	10.166	3.166	12.6	940.0	FLOOD
480	min	Winter	10.175	3.175	12.6	948.5	FLOOD
600	min	Winter	10.169	3.169	12.6	942.3	FLOOD
720	min	Winter	10.154	3.154	12.6	927.3	FLOOD
960	min	Winter	10.118	3.118	12.6	891.4	FLOOD
1440	min	Winter	10.044	3.044	12.6	817.2	FLOOD
2160	min	Winter	8.889	1.889	12.4	717.8	O K
2880	min	Winter	8.646	1.646	11.8	625.3	O K
4320	min	Winter	8.215	1.215	10.9	461.9	O K
5760	min	Winter	7.861	0.861	10.2	327.1	O K
7200	min	Winter	7.573	0.573	9.6	217.6	O K
8640	min	Winter	7.344	0.344	9.1	130.8	O K
10080	min	Winter	7.172	0.172	8.8	65.5	O K

	Stor	m	Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
240	min	Winter	19.065	132.8	256
360	min	Winter	13.962	167.4	368
480	min	Winter	11.178	175.8	478
600	min	Winter	9.399	169.6	586
720	min	Winter	8.153	154.6	688
960	min	Winter	6.510	118.7	780
1440	min	Winter	4.731	44.5	1082
2160	min	Winter	3.432	0.0	1528
2880	min	Winter	2.730	0.0	1964
4320	min	Winter	1.973	0.0	2784
5760	min	Winter	1.566	0.0	3552
7200	min	Winter	1.308	0.0	4280
8640	min	Winter	1.129	0.0	4960
10080	min	Winter	0.998	0.0	5568

Hydrock Consultants Ltd	Page 3	
	Bristol Airport 12mpps	
	Existing Terminal Replan	
	Q100 +30%	Micro
Date 12/11/2018	Designed by RJH	Drainage
File Ex Terminal Replan.SRCX	Checked by	Diamage
Innovyze	Source Control 2018.1	

 Return
 Reinfall Model
 FSR
 Winter Storms
 Yes

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

 Ratio R
 0.370
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +30

Time Area Diagram

Total Area (ha) 1.656

Time	(mins)	Area												
From:	To:	(ha)												
0	4	0.166	8	12	0.166	16	20	0.166	24	28	0.165	32	36	0.165
4	8	0.166	12	16	0.166	20	24	0.166	28	32	0.165	36	40	0.165

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

Hydrock Consultants Ltd		Page 4
	Bristol Airport 12mpps	
	Existing Terminal Replan	
	Q100 +30%	Micro
Date 12/11/2018	Designed by RJH	Drainage
File Ex Terminal Replan.SRCX	Checked by	nigiriade
Innovyze	Source Control 2018.1	,

Storage is Online Cover Level (m) 10.000

Cellular Storage Structure

Invert Level (m) 7.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.15100 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.15100

Depth	(m) <i>I</i>	Area (m²)	Inf. Are	a (m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.0	000	400.0		400.0	2.	000	4	00.0		6	00.0	2.	100		0.0		6	500.0

Hydrock Consultants Ltd	Page 1	
	Bristol Airport 12mpps	
	Soakaway 3	
	Q30	Micro
Date 01/09/2018	Designed by RJH	Drainage
File Point C + Ex Hways.SRCX	Checked by	Diamage
Innovyze	Source Control 2018.1	·

Half Drain Time : 259 minutes.

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Infiltration	Volume	
			(m)	(m)	(1/s)	(m³)	
		Summer				78.3	O K
30	min	Summer	7.538	0.538	5.4		O K
60	min	Summer	7.653	0.653	5.7		O K
120	min	Summer	7.737	0.737	5.9	140.0	O K
180	min	Summer	7.755	0.755	5.9	143.4	O K
240	min	Summer	7.750	0.750	5.9	142.5	O K
360	min	Summer	7.732	0.732	5.9	139.0	O K
480	min	Summer	7.709	0.709	5.8	134.6	O K
600	min	Summer	7.685	0.685	5.7	130.1	O K
720	min	Summer	7.661	0.661	5.7	125.5	O K
960	min	Summer	7.613	0.613	5.6	116.5	O K
1440	min	Summer	7.522	0.522	5.4	99.2	O K
2160	min	Summer	7.402	0.402	5.1	76.4	O K
2880	min	Summer	7.303	0.303	4.9	57.5	O K
4320	min	Summer	7.160	0.160	4.6	30.4	O K
5760	min	Summer	7.078	0.078	4.4	14.7	O K
7200	min	Summer	7.048	0.048	4.2	9.2	O K
8640	min	Summer	7.042	0.042	3.6	8.0	O K
10080	min	Summer	7.037	0.037	3.2	7.0	O K
15	min	Winter	7.465	0.465	5.2	88.4	ОК
30	min	Winter	7.608	0.608	5.6	115.5	ОК
60	min	Winter	7.742	0.742	5.9	140.9	O K
120	min	Winter	7.845	0.845	6.1		ОК
180	min	Winter	7.875	0.875	6.2	166.2	ОК

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Time-Peak (mins)
15	min	Summer	74.059	0.0	32
30	min	Summer	48.833	0.0	45
60	min	Summer	30.811	0.0	72
120	min	Summer	18.860	0.0	126
180	min	Summer	13.992	0.0	182
240	min	Summer	11.265	0.0	214
360	min	Summer	8.299	0.0	278
480	min	Summer	6.674	0.0	344
600	min	Summer	5.632	0.0	414
720	min	Summer	4.901	0.0	482
960	min	Summer	3.933	0.0	620
1440	min	Summer	2.881	0.0	888
2160	min	Summer	2.107	0.0	1272
2880	min	Summer	1.687	0.0	1644
4320	min	Summer	1.231	0.0	2344
5760	min	Summer	0.984	0.0	3000
7200	min	Summer	0.827	0.0	3672
8640	min	Summer	0.717	0.0	4408
10080	min	Summer	0.636	0.0	5144
15	min	Winter	74.059	0.0	32
30	min	Winter	48.833	0.0	45
60	min	Winter	30.811	0.0	72
120	min	Winter	18.860	0.0	126
180	min	Winter	13.992	0.0	180

Hydrock Consultants Ltd	Page 2	
	Bristol Airport 12mpps	
	Soakaway 3	
	Q30	Micro
Date 01/09/2018	Designed by RJH	Drainage
File Point C + Ex Hways.SRCX	Checked by	Dialiacle
Innovyze	Source Control 2018.1	

		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
min	Winter	7.873	0.873	6.2	165.9	ОК
min	Winter	7.849	0.849	6.1	161.2	O K
min	Winter	7.818	0.818	6.0	155.4	O K
min	Winter	7.783	0.783	6.0	148.8	O K
min	Winter	7.747	0.747	5.9	141.9	O K
min	Winter	7.673	0.673	5.7	128.0	O K
min	Winter	7.536	0.536	5.4	101.8	O K
min	Winter	7.360	0.360	5.0	68.5	O K
min	Winter	7.223	0.223	4.7	42.4	O K
min	Winter	7.058	0.058	4.3	11.0	O K
min	Winter	7.042	0.042	3.6	7.9	O K
min	Winter	7.035	0.035	3.0	6.7	O K
min	Winter	7.030	0.030	2.6	5.8	O K
min	Winter	7.027	0.027	2.3	5.1	O K
	min min min min min min min min min min	min Winter	Event Level (m) min Winter 7.873 min Winter 7.849 min Winter 7.818 min Winter 7.783 min Winter 7.747 min Winter 7.673 min Winter 7.673 min Winter 7.360 min Winter 7.223 min Winter 7.058 min Winter 7.058 min Winter 7.035 min Winter 7.035 min Winter 7.030	Event Level (m) Depth (m) min Winter 7.873 0.873 min Winter 7.849 0.849 min Winter 7.818 0.818 min Winter 7.783 0.783 min Winter 7.673 0.673 min Winter 7.536 0.536 min Winter 7.360 0.360 min Winter 7.058 0.058 min Winter 7.042 0.042 min Winter 7.035 0.035 min Winter 7.030 0.035	Event Level (m) Depth (m) Infiltration (1/s) min Winter 7.873 0.873 6.2 min Winter 7.849 0.849 6.1 min Winter 7.818 0.818 6.0 min Winter 7.747 0.747 5.9 min Winter 7.673 0.673 5.7 min Winter 7.536 0.536 5.4 min Winter 7.223 0.223 4.7 min Winter 7.058 0.058 4.3 min Winter 7.042 0.042 3.6 min Winter 7.035 0.035 3.0 min Winter 7.035 0.035 3.0	Event Level (m) Depth (m) Infiltration (1/s) Volume (m³) min Winter 7.873 0.873 6.2 165.9 min Winter 7.849 0.849 6.1 161.2 min Winter 7.818 0.818 6.0 155.4 min Winter 7.783 0.783 6.0 148.8 min Winter 7.673 0.673 5.7 128.0 min Winter 7.536 0.536 5.4 101.8 min Winter 7.223 0.223 4.7 42.4 min Winter 7.058 0.058 4.3 11.0 min Winter 7.042 0.042 3.6 7.9 min Winter 7.035 0.035 3.0 6.7 min Winter 7.035 0.035 3.0 6.7 min Winter 7.030 0.030 2.6 5.8

	Stor	m	Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
240	min	Winter	11.265	0.0	234
360	min	Winter	8.299	0.0	294
480	min	Winter	6.674	0.0	370
600	min	Winter	5.632	0.0	448
720	min	Winter	4.901	0.0	522
960	min	Winter	3.933	0.0	670
1440	min	Winter	2.881	0.0	952
2160	min	Winter	2.107	0.0	1344
2880	min	Winter	1.687	0.0	1708
4320	min	Winter	1.231	0.0	2292
5760	min	Winter	0.984	0.0	2920
7200	min	Winter	0.827	0.0	3672
8640	min	Winter	0.717	0.0	4408
10080	min	Winter	0.636	0.0	5056

Hydrock Consultants Ltd		Page 3
	Bristol Airport 12mpps	
	Soakaway 3	
	Q30	Micro
Date 01/09/2018	Designed by RJH	
File Point C + Ex Hways.SRCX	Checked by	Drainage
Innovyze	Source Control 2018.1	

 Return
 Reduction
 Region
 England and Wales
 Winter Storms
 Yes

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

 Ratio R
 0.370
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +0

Time Area Diagram

Total Area (ha) 0.618

Time	(mins)	Area												
From:	To:	(ha)												
0	4	0.124	4	8	0.124	8	12	0.124	12	16	0.123	16	20	0.123

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha) 0.000

Hydrock Consultants Ltd	Page 4	
	Bristol Airport 12mpps	
	Soakaway 3	
	Q30	Micro
Date 01/09/2018	Designed by RJH	Drainage
File Point C + Ex Hways.SRCX	Checked by	Dialilacie
Innovyze	Source Control 2018.1	,

Storage is Online Cover Level (m) 11.000

Cellular Storage Structure

Invert Level (m) 7.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.15100 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.15100

Depth (n) Area	(m²)	Inf. Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)	
0.0	00	200.0	2	200.0	1.	800	2	00.0		3	94.4	1.	900		0.0		3	94.4	

Hydrock Consultants Ltd		Page 1
•	Bristol Airport 12mpps	
	Soakaway 3	
	Q100 +30%	Micro
Date 12/11/2018	Designed by RJH	···········
File Point C + Ex Hways.SRCX	Checked by	Drainage
Innovyze	Source Control 2018.1	,

Half Drain Time : 382 minutes.

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	${\tt Infiltration}$	Volume	
			(m)	(m)	(1/s)	(m³)	
		Summer			5.8	136.0	O K
		Summer			6.3		O K
		Summer			6.8		
120	min	Summer	8.349	1.349	7.2		
180	min	Summer	8.413	1.413	7.4	268.5	O K
240	min	Summer	8.427	1.427	7.4	271.1	O K
360	min	Summer	8.413	1.413	7.4	268.4	O K
480	min	Summer	8.385	1.385	7.3	263.2	O K
600	min	Summer	8.353	1.353	7.3	257.0	O K
720	min	Summer	8.319	1.319	7.2	250.5	O K
960	min	Summer	8.252	1.252	7.0	238.0	O K
1440	min	Summer	8.132	1.132	6.8	215.1	O K
2160	min	Summer	7.969	0.969	6.4	184.1	O K
2880	min	Summer	7.826	0.826	6.1	156.9	O K
4320	min	Summer	7.590	0.590	5.5	112.2	O K
5760	min	Summer	7.411	0.411	5.1	78.0	O K
7200	min	Summer	7.275	0.275	4.8	52.3	O K
8640	min	Summer	7.175	0.175	4.6	33.2	O K
10080	min	Summer	7.105	0.105	4.4	20.0	O K
15	min	Winter	7.806	0.806	6.0	153.1	ОК
30	min	Winter	8.064	1.064	6.6	202.2	O K
60	min	Winter	8.318	1.318	7.2	250.4	ОК
120	min	Winter	8.534	1.534	7.7	291.5	ОК
180	min	Winter	8.618	1.618	7.9	307.3	O K

	Stor	m	Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15		Summer		0.0	33
30	min	Summer	83.061	0.0	47
60	min	Summer	52.662	0.0	74
120	min	Summer	32.210	0.0	130
180	min	Summer	23.799	0.0	186
240	min	Summer	19.065	0.0	242
360	min	Summer	13.962	0.0	314
480	min	Summer	11.178	0.0	376
600	min	Summer	9.399	0.0	442
720	min	Summer	8.153	0.0	510
960	min	Summer	6.510	0.0	648
1440	min	Summer	4.731	0.0	924
2160	min	Summer	3.432	0.0	1328
2880	min	Summer	2.730	0.0	1716
4320	min	Summer	1.973	0.0	2472
5760	min	Summer	1.566	0.0	3184
7200	min	Summer	1.308	0.0	3896
8640	min	Summer	1.129	0.0	4584
10080	min	Summer	0.998	0.0	5248
15	min	Winter	124.836	0.0	33
30	min	Winter	83.061	0.0	47
60	min	Winter	52.662	0.0	74
120	min	Winter	32.210	0.0	128
180	min	Winter	23.799	0.0	184

Hydrock Consultants Ltd		Page 2
	Bristol Airport 12mpps	
	Soakaway 3	
	Q100 +30%	Micro
Date 12/11/2018	Designed by RJH	·····C·· O
File Point C + Ex Hways.SRCX	Checked by	Drainage
Innovyze	Source Control 2018.1	'

Storm			Max	Max	Max	Max	Status
	Even	t	Level	Depth	${\tt Infiltration}$	Volume	
			(m)	(m)	(1/s)	(m³)	
240	min	Winter	8 644	1 644	7.9	312.3	ОК
		Winter			7.9	311.4	O K
480	min	Winter	8.604	1.604	7.8	304.8	O K
600	min	Winter	8.567	1.567	7.7	297.7	O K
720	min	Winter	8.522	1.522	7.6	289.2	O K
960	min	Winter	8.426	1.426	7.4	270.9	O K
1440	min	Winter	8.248	1.248	7.0	237.2	O K
2160	min	Winter	8.009	1.009	6.5	191.7	O K
2880	min	Winter	7.804	0.804	6.0	152.8	O K
4320	min	Winter	7.484	0.484	5.3	91.9	O K
5760	min	Winter	7.255	0.255	4.8	48.4	O K
7200	min	Winter	7.101	0.101	4.4	19.2	O K
8640	min	Winter	7.048	0.048	4.1	9.1	O K
10080	min	Winter	7.042	0.042	3.6	8.0	O K

Stor	m	Rain	Flooded	Time-Peak
Even	t	(mm/hr)	Volume	(mins)
			(m³)	
min	Winter	19.065	0.0	240
min	Winter	13.962	0.0	344
min	Winter	11.178	0.0	394
min	Winter	9.399	0.0	468
min	Winter	8.153	0.0	546
min	Winter	6.510	0.0	700
min	Winter	4.731	0.0	996
min	Winter	3.432	0.0	1420
min	Winter	2.730	0.0	1824
min	Winter	1.973	0.0	2596
min	Winter	1.566	0.0	3296
min	Winter	1.308	0.0	3904
min	Winter	1.129	0.0	4408
min	Winter	0.998	0.0	5000
	min min min min min min min min min min	min Winter	min Winter 19.065 min Winter 13.962 min Winter 11.178 min Winter 9.399 min Winter 8.153 min Winter 6.510 min Winter 4.731 min Winter 3.432 min Winter 2.730 min Winter 1.973 min Winter 1.966 min Winter 1.308 min Winter 1.308 min Winter 1.29	Event (mm/hr) Volume (m³) min Winter 19.065 0.0 min Winter 13.962 0.0 min Winter 11.178 0.0 min Winter 9.399 0.0 min Winter 8.153 0.0 min Winter 4.731 0.0 min Winter 3.432 0.0 min Winter 2.730 0.0 min Winter 1.973 0.0 min Winter 1.566 0.0 min Winter 1.308 0.0 min Winter 1.129 0.0

Hydrock Consultants Ltd		Page 3
	Bristol Airport 12mpps	
	Soakaway 3	
	Q100 +30%	Micro
Date 12/11/2018	Designed by RJH	
File Point C + Ex Hways.SRCX	Checked by	Drainage
Innovyze	Source Control 2018.1	

 Return
 Reinfall Model
 FSR
 Winter Storms
 Yes

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

 Ratio R
 0.370
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +30

Time Area Diagram

Total Area (ha) 0.618

Time	(mins)	Area												
From:	To:	(ha)												
0	4	0.124	4	8	0.124	8	12	0.124	12	16	0.123	16	20	0.123

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha) 0.000

Hydrock Consultants Ltd		Page 4
	Bristol Airport 12mpps	
	Soakaway 3	
	Q100 +30%	Micro
Date 12/11/2018	Designed by RJH	Drainage
File Point C + Ex Hways.SRCX	Checked by	Dialiage
Innovyze	Source Control 2018.1	

Storage is Online Cover Level (m) 11.000

Cellular Storage Structure

Invert Level (m) 7.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.15100 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.15100

Depth (n) Area	(m²)	Inf. Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)	
0.0	00	200.0	2	200.0	1.	800	2	00.0		3	94.4	1.	900		0.0		3	94.4	

Hydrock Consultants Ltd		Page 1
	Bristol Airport 12mpps	
•	Terminal Building Canopy	
	Q30	Micro
Date 01/09/2018	Designed by RJH	Drainage
File Terminal Canopy.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1	·

Half Drain Time : 218 minutes.

Storm			Max	Max	Max	Max	Status
	Even	t	Level	Depth	Infiltration	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	7.307	0.307	3.3	41.9	O K
30	min	Summer	7.398	0.398	3.4	54.5	O K
60	min	Summer	7.480	0.480	3.5	65.6	O K
120	min	Summer	7.532	0.532	3.6	72.8	O K
180	min	Summer	7.537	0.537	3.6	73.4	O K
240	min	Summer	7.530	0.530	3.6	72.4	O K
360	min	Summer	7.511	0.511	3.5	69.9	O K
480	min	Summer	7.489	0.489	3.5	66.9	O K
600	min	Summer	7.467	0.467	3.5	63.9	O K
720	min	Summer	7.445	0.445	3.5	60.9	O K
960	min	Summer	7.401	0.401	3.4	54.9	O K
1440	min	Summer	7.320	0.320	3.3	43.7	O K
2160	min	Summer	7.217	0.217	3.2	29.7	O K
2880	min	Summer	7.141	0.141	3.2	19.4	O K
4320	min	Summer	7.059	0.059	3.1	8.0	O K
5760	min	Summer	7.043	0.043	2.7	5.9	O K
7200	min	Summer	7.037	0.037	2.3	5.0	O K
8640	min	Summer	7.032	0.032	1.9	4.3	O K
10080	min	Summer	7.028	0.028	1.7	3.8	O K
15	min	Winter	7.346	0.346	3.4		ОК
30	min	Winter	7.451	0.451	3.5	61.7	ОК
		Winter			3.6		
120	min	Winter	7.614	0.614	3.6	83.9	ОК
180	min	Winter	7.626	0.626	3.7	85.7	ОК

	Stor	m	Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15		Summer	74.059	0.0	28
30		Summer	48.833	0.0	42
60	min	Summer	30.811	0.0	68
120	min	Summer	18.860	0.0	124
180	min	Summer	13.992	0.0	172
240	min	Summer	11.265	0.0	200
360	min	Summer	8.299	0.0	266
480	min	Summer	6.674	0.0	334
600	min	Summer	5.632	0.0	402
720	min	Summer	4.901	0.0	470
960	min	Summer	3.933	0.0	606
1440	min	Summer	2.881	0.0	866
2160	min	Summer	2.107	0.0	1236
2880	min	Summer	1.687	0.0	1588
4320	min	Summer	1.231	0.0	2220
5760	min	Summer	0.984	0.0	2936
7200	min	Summer	0.827	0.0	3672
8640	min	Summer	0.717	0.0	4408
10080	min	Summer	0.636	0.0	5056
15	min	Winter	74.059	0.0	28
30	min	Winter	48.833	0.0	42
60	min	Winter	30.811	0.0	68
120	min	Winter	18.860	0.0	124
180	min	Winter	13.992	0.0	178

Hydrock Consultants Ltd	Page 2	
	Bristol Airport 12mpps	
	Terminal Building Canopy	
	Q30	Micro
Date 01/09/2018	Designed by RJH	Drainage
File Terminal Canopy.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1	

	Stor Even		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
240	min	Winter	7.617	0.617	3.6	84.5	ОК
360	min	Winter	7.592	0.592	3.6	81.0	O K
480	min	Winter	7.561	0.561	3.6	76.8	O K
600	min	Winter	7.527	0.527	3.6	72.2	O K
720	min	Winter	7.493	0.493	3.5	67.5	O K
960	min	Winter	7.425	0.425	3.4	58.1	O K
1440	min	Winter	7.301	0.301	3.3	41.2	O K
2160	min	Winter	7.155	0.155	3.2	21.2	O K
2880	min	Winter	7.064	0.064	3.1	8.8	O K
4320	min	Winter	7.039	0.039	2.4	5.4	O K
5760	min	Winter	7.032	0.032	1.9	4.3	O K
7200	min	Winter	7.027	0.027	1.6	3.6	O K
8640	min	Winter	7.023	0.023	1.4	3.1	O K
10080	min	Winter	7.021	0.021	1.3	2.8	O K

	Stor	m	Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
240	min	Winter	11.265	0.0	228
360	min	Winter	8.299	0.0	284
480	min	Winter	6.674	0.0	362
600	min	Winter	5.632	0.0	438
720	min	Winter	4.901	0.0	512
960	min	Winter	3.933	0.0	654
1440	min	Winter	2.881	0.0	922
2160	min	Winter	2.107	0.0	1280
2880	min	Winter	1.687	0.0	1564
4320	min	Winter	1.231	0.0	2208
5760	min	Winter	0.984	0.0	2944
7200	min	Winter	0.827	0.0	3680
8640	min	Winter	0.717	0.0	4336
10080	min	Winter	0.636	0.0	5128

Hydrock Consultants Ltd	Page 3	
	Bristol Airport 12mpps	
	Terminal Building Canopy	
	Q30	Micro
Date 01/09/2018	Designed by RJH	Drainage
File Terminal Canopy.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1	

 Return
 Reduction
 Region
 England and Wales
 Winter Storms
 Yes

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

 Ratio R
 0.370
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +0

Time Area Diagram

Total Area (ha) 0.333

Time	(mins)	Area									
From:	To:	(ha)									
0	4	0.083	4	8	0.083	8	12	0.083	12	16	0.084

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha) 0.000

Hydrock Consultants Ltd	Page 4	
•	Bristol Airport 12mpps	
	Terminal Building Canopy	
	Q30	Micro
Date 01/09/2018	Designed by RJH	
File Terminal Canopy.SRCX	Checked by	Drainage
Innovyze	Source Control 2018.1	

Storage is Online Cover Level (m) 11.000

Cellular Storage Structure

Invert Level (m) 7.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.15100 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.15100

Depth	(m)	Area ((m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)	
0.0	000	14	14.0		1	44.0	1.	500	1	44.0		2	16.0	1.	600		0.0		2	16.0	

Hydrock Consultants Ltd	Page 1	
	Bristol Airport 12mpps	
	Terminal Building Canopy	
	Q100 +30%	Mirro Mirro
Date 12/11/2018	Designed by RJH	······
File Terminal Canopy.SRCX	Checked by	Drainage
Innovyze	Source Control 2018.1	

Half Drain Time : 366 minutes.

Storm			Max	Max	Max	Max	Status
	Even	t	Level	Depth	Infiltration	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	7.535	0.535	3.6	73.1	O K
30	min	Summer	7.704	0.704	3.7	96.3	O K
60	min	Summer	7.866	0.866	3.9	118.4	O K
120	min	Summer	7.994	0.994	4.0	136.0	O K
180	min	Summer	8.035	1.035	4.1	141.6	O K
240	min	Summer	8.038	1.038	4.1	142.0	O K
360	min	Summer	8.016	1.016	4.0	139.0	O K
480	min	Summer	7.987	0.987	4.0	135.1	O K
600	min	Summer	7.958	0.958	4.0	131.1	O K
720	min	Summer	7.930	0.930	4.0	127.2	O K
960	min	Summer	7.875	0.875	3.9	119.8	O K
1440	min	Summer	7.772	0.772	3.8	105.6	O K
2160	min	Summer	7.629	0.629	3.7	86.1	O K
2880	min	Summer	7.504	0.504	3.5	69.0	O K
4320	min	Summer	7.307	0.307	3.3	42.0	ОК
5760	min	Summer	7.171	0.171	3.2	23.4	ОК
7200	min	Summer	7.088	0.088	3.1	12.0	ОК
8640	min	Summer	7.050	0.050	3.1	6.8	ОК
10080	min	Summer	7.044	0.044	2.7	6.0	ОК
15	min	Winter	7.602	0.602	3.6	82.4	O K
30	min	Winter	7.794	0.794	3.8		O K
		Winter			4.0		
		Winter			4.2		
		Winter			4.2	163.0	O K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Time-Peak (mins)
15	min	Summer	124.836	0.0	29
30	min	Summer	83.061	0.0	43
60	min	Summer	52.662	0.0	72
120	min	Summer	32.210	0.0	128
180	min	Summer	23.799	0.0	184
240	min	Summer	19.065	0.0	242
360	min	Summer	13.962	0.0	310
480	min	Summer	11.178	0.0	372
600	min	Summer	9.399	0.0	436
720	min	Summer	8.153	0.0	506
960	min	Summer	6.510	0.0	644
1440	min	Summer	4.731	0.0	916
2160	160 min Summ		3.432	0.0	1312
2880	min	Summer	2.730	0.0	1700
4320	min	Summer	1.973	0.0	2424
5760	min	Summer	1.566	0.0	3112
7200	min	Summer	1.308	0.0	3752
8640	min	Summer	1.129	0.0	4400
10080	min	Summer	0.998	0.0	5080
15	min	Winter	124.836	0.0	29
30	min	Winter	83.061	0.0	43
60	min	Winter	52.662	0.0	70
120	min	Winter	32.210	0.0	126
180	min	Winter	23.799	0.0	182

Hydrock Consultants Ltd	Page 2	
•	Bristol Airport 12mpps	
	Terminal Building Canopy	
	Q100 +30%	Micro
Date 12/11/2018	Designed by RJH	
File Terminal Canopy.SRCX	Checked by	Drainage
Innovyze	Source Control 2018.1	

	Storm	-	Max	Мах	Мах	Max	Status
	Event	5		-	Infiltration		
			(m)	(m)	(1/s)	(m³)	
240	min	Winter	8.205	1.205	4.2	164.8	ОК
360	min	Winter	8.189	1.189	4.2	162.7	O K
480	min	Winter	8.151	1.151	4.2	157.5	O K
600	min	Winter	8.114	1.114	4.1	152.4	O K
720	min	Winter	8.075	1.075	4.1	147.1	O K
960	min	Winter	7.996	0.996	4.0	136.3	O K
1440	min	Winter	7.840	0.840	3.9	114.9	O K
2160	min	Winter	7.627	0.627	3.7	85.8	O K
2880	min	Winter	7.447	0.447	3.5	61.2	O K
4320	min	Winter	7.181	0.181	3.2	24.8	O K
5760	min	Winter	7.050	0.050	3.1	6.9	O K
7200	min	Winter	7.042	0.042	2.6	5.7	O K
8640	min	Winter	7.036	0.036	2.2	4.9	O K
10080	min	Winter	7.032	0.032	2.0	4.4	O K

Storm			m	Rain	Flooded	Time-Peak
	Event		(mm/hr)	Volume	(mins)	
					(m³)	
	240	min	Winter	19.065	0.0	238
	360	min	Winter	13.962	0.0	344
	480	min	Winter	11.178	0.0	392
	600	min	Winter	9.399	0.0	468
	720	min	Winter	8.153	0.0	544
	960	min	Winter	6.510	0.0	698
	1440	min	Winter	4.731	0.0	992
	2160	min	Winter	3.432	0.0	1408
	2880	min	Winter	2.730	0.0	1792
	4320	min	Winter	1.973	0.0	2476
	5760	min	Winter	1.566	0.0	2936
	7200	min	Winter	1.308	0.0	3672
	8640	min	Winter	1.129	0.0	4312
	10080	min	Winter	0.998	0.0	5080

Hydrock Consultants Ltd	Page 3	
	Bristol Airport 12mpps	
	Terminal Building Canopy	
	Q100 +30%	Micro
Date 12/11/2018	Designed by RJH	Drainage
File Terminal Canopy.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1	

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.370 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +30

Time Area Diagram

Total Area (ha) 0.333

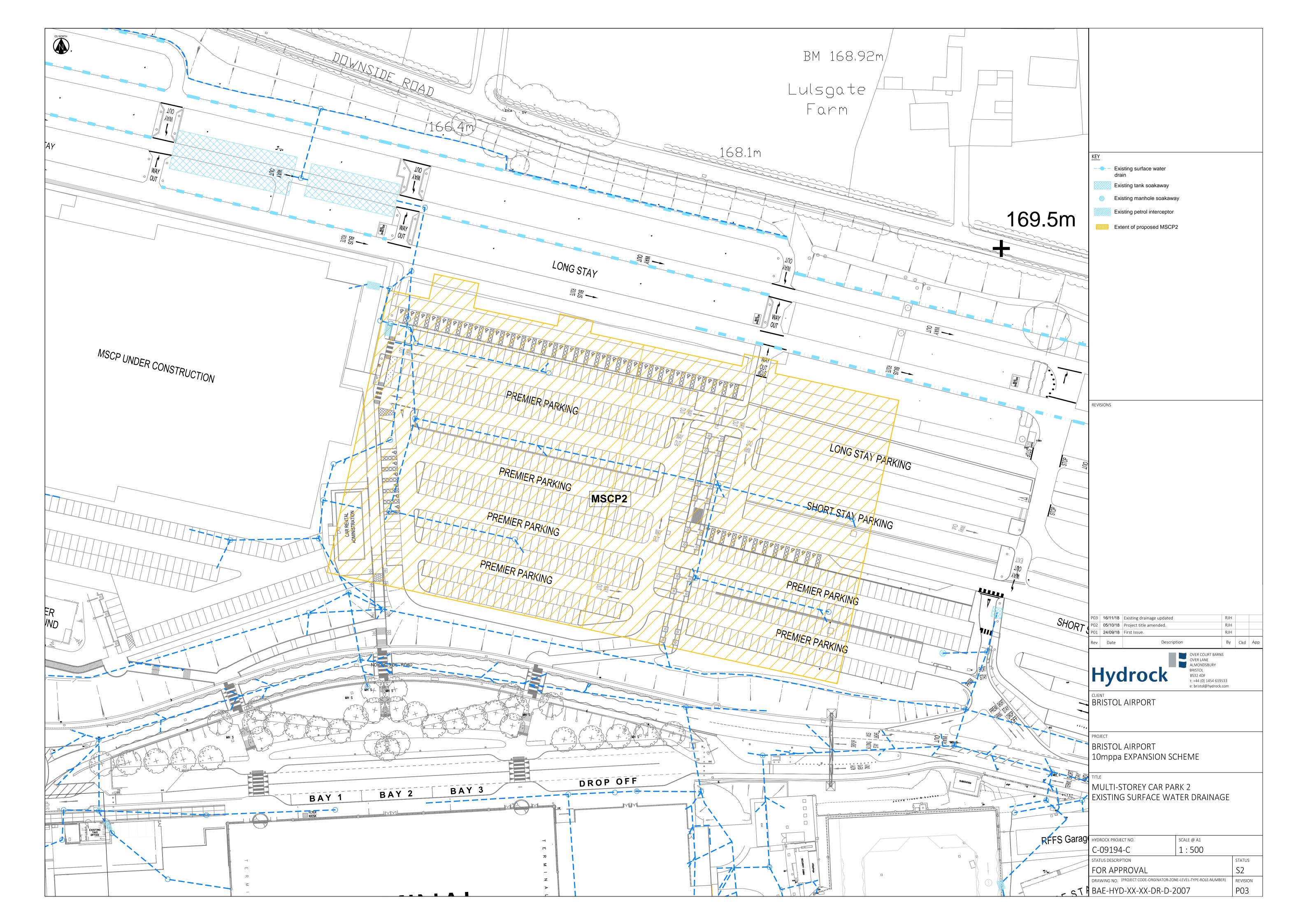
Time	(mins)	Area									
From:	To:	(ha)									
0	4	0.083	4	8	0.083	8	12	0.083	12	16	0.084

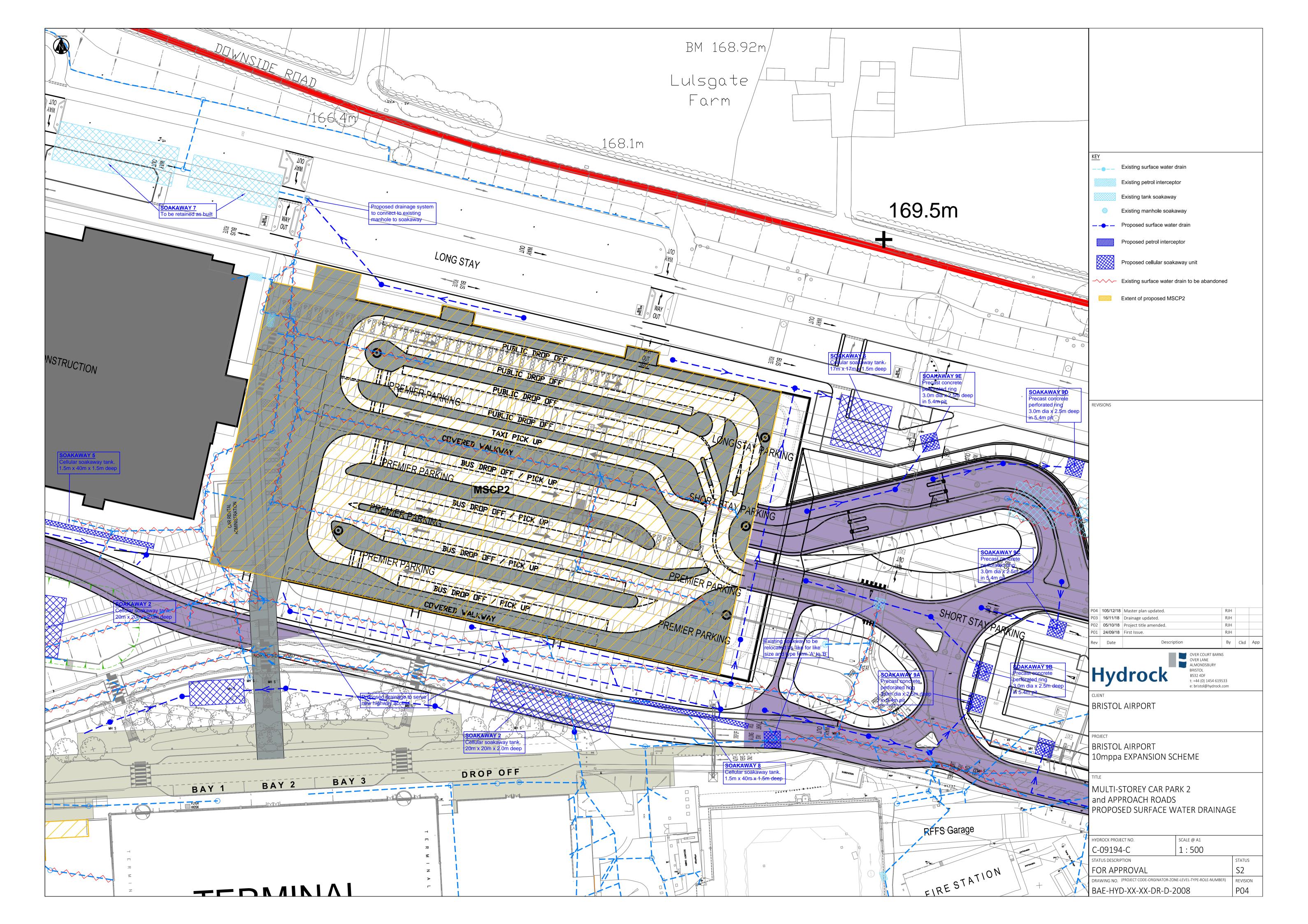
<u>Time Area Diagram</u>

Total Area (ha) 0.000

Hydrock Consultants Ltd		Page 4
	Bristol Airport 12mpps	
	Terminal Building Canopy	
	Q100 +30%	Micro
Date 12/11/2018	Designed by RJH	Drainage
File Terminal Canopy.SRCX	Checked by	Diamade
Innovyze	Source Control 2018.1	'

Storage is Online Cover Level (m) 11.000


Cellular Storage Structure


Depth (m) Area	(m²)	Inf. Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.0	000	144.0		144.0	1.	500	1	44.0		2	16.0	1.	600		0.0		2	16.0

Appendix E – Transport Interchange / MSCP2

Reference	Title
BAE-HYD-XX-XX-DR-D-2007-P03	Existing Surface Water Drainage
BAE-HYD-XX-XX-DR-D-2008-P04	Proposed Surface Water Drainage
MSCP2.SRCX	MSCP2 Soakaway 6 – Q30
MSCP2.SRCX	MSCP2 Soakaway 6 – Q100 +30%
MSCP2 Access South.SRCX	MSCP2 Access South Soakaway 8 - Q30
MSCP2 Access South.SRCX	MSCP2 Access South Soakaway 8 – Q100 +30%

Hydrock Consultants Ltd		Page 1
	Bristol Airport 12mpps	
	MSCP2 Soakaway 6	
	Q30	Micro
Date 01/09/2018	Designed by RJH	
File MSCP2.SRCX	Checked by	Drainage
Innovyze	Source Control 2018.1	'

Summary of Results for 30 year Return Period

Half Drain Time : 216 minutes.

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Infiltration	Volume	
			(m)	(m)	(1/s)	(m³)	
		Summer			8.1		O K
30	min	Summer	7.499	0.499	8.3		O K
60	min	Summer	7.602	0.602	8.5	165.1	O K
120	min	Summer	7.668	0.668	8.6	183.4	O K
180	min	Summer	7.675	0.675	8.6	185.2	O K
240	min	Summer	7.665	0.665	8.6	182.5	O K
360	min	Summer	7.640	0.640	8.5	175.8	O K
480	min	Summer	7.614	0.614	8.5	168.5	O K
600	min	Summer	7.587	0.587	8.5	161.1	O K
720	min	Summer	7.560	0.560	8.4	153.7	O K
960	min	Summer	7.506	0.506	8.3	138.9	ОК
1440	min	Summer	7.405	0.405	8.1	111.1	O K
2160	min	Summer	7.276	0.276	7.9	75.8	ОК
2880	min	Summer	7.179	0.179	7.7	49.1	ОК
4320	min	Summer	7.068	0.068	7.5	18.6	O K
5760	min	Summer	7.045	0.045	6.7	12.2	O K
7200	min	Summer	7.038	0.038	5.7	10.3	O K
8640	min	Summer	7.033	0.033	4.9	8.9	O K
10080	min	Summer	7.029	0.029	4.4	8.0	O K
15	min	Winter	7.434	0.434	8.2	119.2	ОК
30	min	Winter	7.565	0.565	8.4	155.2	ОК
60	min	Winter	7.685	0.685	8.6	188.2	ОК
120	min	Winter	7.771	0.771	8.8	211.7	ОК
180	min	Winter	7.789	0.789	8.8	216.6	ОК

	Stor	m	Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15		Summer	74.059	0.0	28
30	min	Summer	48.833	0.0	42
60	min	Summer	30.811	0.0	68
120	min	Summer	18.860	0.0	124
180	min	Summer	13.992	0.0	176
240	min	Summer	11.265	0.0	204
360	min	Summer	8.299	0.0	268
480	min	Summer	6.674	0.0	336
600	min	Summer	5.632	0.0	406
720	min	Summer	4.901	0.0	474
960	min	Summer	3.933	0.0	610
1440	min	Summer	2.881	0.0	872
2160	min	Summer	2.107	0.0	1240
2880	min	Summer	1.687	0.0	1592
4320	min	Summer	1.231	0.0	2248
5760	min	Summer	0.984	0.0	2936
7200	min	Summer	0.827	0.0	3664
8640	min	Summer	0.717	0.0	4336
10080	min	Summer	0.636	0.0	5104
15	min	Winter	74.059	0.0	28
30	min	Winter	48.833	0.0	42
60	min	Winter	30.811	0.0	68
120	min	Winter	18.860	0.0	124
180	min	Winter	13.992	0.0	178

Hydrock Consultants Ltd		Page 2
	Bristol Airport 12mpps MSCP2 Soakaway 6	
•	Q30	Micro
Date 01/09/2018	Designed by RJH	Drainage
File MSCP2.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1	

Summary of Results for 30 year Return Period

	Stor: Even		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
240	min	Winter	7.778	0.778	8.8	213.7	ОК
360	min	Winter	7.745	0.745	8.7	204.6	O K
480	min	Winter	7.708	0.708	8.7	194.3	O K
600	min	Winter	7.667	0.667	8.6	183.1	O K
720	min	Winter	7.625	0.625	8.5	171.5	O K
960	min	Winter	7.541	0.541	8.4	148.6	O K
1440	min	Winter	7.386	0.386	8.1	106.0	O K
2160	min	Winter	7.200	0.200	7.8	55.0	O K
2880	min	Winter	7.079	0.079	7.6	21.8	O K
4320	min	Winter	7.040	0.040	6.0	11.1	O K
5760	min	Winter	7.032	0.032	4.8	8.9	O K
7200	min	Winter	7.027	0.027	4.1	7.4	O K
8640	min	Winter	7.024	0.024	3.6	6.5	O K
10080	min	Winter	7.021	0.021	3.2	5.8	O K

	Stor	m	Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
240	min	Winter	11.265	0.0	230
360	min	Winter	8.299	0.0	288
480	min	Winter	6.674	0.0	364
600	min	Winter	5.632	0.0	440
720	min	Winter	4.901	0.0	514
960	min	Winter	3.933	0.0	658
1440	min	Winter	2.881	0.0	928
2160	min	Winter	2.107	0.0	1288
2880	min	Winter	1.687	0.0	1588
4320	min	Winter	1.231	0.0	2208
5760	min	Winter	0.984	0.0	2944
7200	min	Winter	0.827	0.0	3640
8640	min	Winter	0.717	0.0	4384
10080	min	Winter	0.636	0.0	5136

Hydrock Consultants Ltd		Page 3
	Bristol Airport 12mpps	
	MSCP2 Soakaway 6	
	Q30	Micro
Date 01/09/2018	Designed by RJH	
File MSCP2.SRCX	Checked by	Drainage
Innovyze	Source Control 2018.1	

 Return
 Reduction
 Region
 England and Wales
 Winter Storms
 Yes

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

 Ratio R
 0.370
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +0

Time Area Diagram

Total Area (ha) 0.837

Time	(mins)	Area									
From:	To:	(ha)									
0	4	0.209	4	8	0.209	8	12	0.209	12	16	0.210

<u>Time Area Diagram</u>

Total Area (ha) 0.000

Hydrock Consultants Ltd		Page 4
	Bristol Airport 12mpps	
	MSCP2 Soakaway 6	
	Q30	Micro
Date 01/09/2018	Designed by RJH	Drainage
File MSCP2.SRCX	Checked by	Dialiade
Innovyze	Source Control 2018.1	,

Storage is Online Cover Level (m) 11.000

Cellular Storage Structure

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	.000	2	89.0		2	289.0	1.	500	2	289.0		3	391.0	1.	600		0.0		3	91.0

Hydrock Consultants Ltd		Page 1
•	Bristol Airport 12mpps	
	MSCP2 Soakaway 6	
	Q100 +30%	Micro
Date 12/11/2018	Designed by RJH	
File MSCP2.SRCX	Checked by	Drainage
Innovyze	Source Control 2018.1	'

Half Drain Time : 371 minutes.

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Infiltration	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	7.670	0.670	8.6	184.0	0 K
30	min	Summer	7.883	0.883	9.0	242.4	O K
60	min	Summer	8.087	1.087	9.3	298.4	O K
120	min	Summer	8.251	1.251	9.6	343.5	O K
180	min	Summer	8.305	1.305	9.7	358.3	O K
240	min	Summer	8.311	1.311	9.7	360.0	O K
360	min	Summer	8.285	1.285	9.7	352.7	O K
480	min	Summer	8.248	1.248	9.6	342.6	O K
600	min	Summer	8.211	1.211	9.5	332.5	O K
720	min	Summer	8.176	1.176	9.5	322.9	O K
960	min	Summer	8.110	1.110	9.4	304.7	O K
1440	min	Summer	7.983	0.983	9.1	269.8	O K
2160	min	Summer	7.807	0.807	8.8	221.5	O K
2880	min	Summer	7.650	0.650	8.6	178.6	O K
4320	min	Summer	7.399	0.399	8.1	109.6	O K
5760	min	Summer	7.224	0.224	7.8	61.4	O K
7200	min	Summer	7.111	0.111	7.6	30.5	O K
8640	min	Summer	7.056	0.056	7.5	15.3	O K
10080	min	Summer	7.046	0.046	6.9	12.5	O K
15	min	Winter	7.755	0.755	8.7	207.3	ОК
30	min	Winter	7.996	0.996	9.2	273.5	ОК
60	min	Winter	8.231	1.231	9.6	338.0	ОК
120	min	Winter	8.429	1.429	9.9	392.2	ОК
180	min	Winter	8.502	1.502	10.0	412.5	O K

	Stor	m	Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
		Summer		0.0	29
			83.061	0.0	43
60		Summer	52.662	0.0	72
		Summer	32.210	0.0	128
180	min	Summer	23.799	0.0	184
240	min	Summer	19.065	0.0	242
360	min	Summer	13.962	0.0	316
480	min	Summer	11.178	0.0	380
600	min	Summer	9.399	0.0	444
720	min	Summer	8.153	0.0	510
960	min	Summer	6.510	0.0	648
1440	min	Summer	4.731	0.0	922
2160	min	Summer	3.432	0.0	1320
2880	min	Summer	2.730	0.0	1708
4320	min	Summer	1.973	0.0	2428
5760	min	Summer	1.566	0.0	3120
7200	min	Summer	1.308	0.0	3760
8640	min	Summer	1.129	0.0	4408
10080	min	Summer	0.998	0.0	5120
15	min	Winter	124.836	0.0	29
30	min	Winter	83.061	0.0	43
60	min	Winter	52.662	0.0	70
120	min	Winter	32.210	0.0	126
180	min	Winter	23.799	0.0	182

Hydrock Consultants Ltd		Page 2
•	Bristol Airport 12mpps	
	MSCP2 Soakaway 6	
	Q100 +30%	Micro
Date 12/11/2018	Designed by RJH	
File MSCP2.SRCX	Checked by	Drainage
Innovyze	Source Control 2018.1	'

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	${\tt Infiltration}$	Volume	
			(m)	(m)	(1/s)	(m³)	
0.40			0 501	1 501	10.0	410 0	0 "
		Winter			10.0	418.0	O K
360	min	Winter	8.510	1.510	10.0	414.3	0 K
480	min	Winter	8.460	1.460	10.0	400.9	O K
600	min	Winter	8.414	1.414	9.9	388.2	O K
720	min	Winter	8.366	1.366	9.8	375.0	O K
960	min	Winter	8.270	1.270	9.6	348.7	O K
1440	min	Winter	8.079	1.079	9.3	296.4	O K
2160	min	Winter	7.815	0.815	8.9	223.8	O K
2880	min	Winter	7.588	0.588	8.5	161.4	O K
4320	min	Winter	7.245	0.245	7.9	67.2	O K
5760	min	Winter	7.058	0.058	7.5	15.9	O K
7200	min	Winter	7.043	0.043	6.5	11.8	O K
8640	min	Winter	7.037	0.037	5.6	10.2	O K
10080	min	Winter	7.033	0.033	4.9	9.0	O K

	Stor	m	Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
240	min	Winter	19.065	0.0	238
360	min	Winter	13.962	0.0	346
480	min	Winter	11.178	0.0	402
600	min	Winter	9.399	0.0	472
720	min	Winter	8.153	0.0	550
960	min	Winter	6.510	0.0	704
1440	min	Winter	4.731	0.0	998
2160	min	Winter	3.432	0.0	1416
2880	min	Winter	2.730	0.0	1804
4320	min	Winter	1.973	0.0	2512
5760	min	Winter	1.566	0.0	3008
7200	min	Winter	1.308	0.0	3680
8640	min	Winter	1.129	0.0	4288
10080	min	Winter	0.998	0.0	5144

Hydrock Consultants Ltd		Page 3
	Bristol Airport 12mpps	
	MSCP2 Soakaway 6	
	Q100 +30%	Micro
Date 12/11/2018	Designed by RJH	
File MSCP2.SRCX	Checked by	Drainage
Innovyze	Source Control 2018.1	

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.370 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +30

Time Area Diagram

Total Area (ha) 0.837

Time	(mins)	Area									
From:	To:	(ha)									
0	4	0.209	4	8	0.209	8	12	0.209	12	16	0.210

<u>Time Area Diagram</u>

Total Area (ha) 0.000

Hydrock Consultants Ltd		Page 4
	Bristol Airport 12mpps	
	MSCP2 Soakaway 6	
	Q100 +30%	Micro
Date 12/11/2018	Designed by RJH	Drainage
File MSCP2.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1	1

Storage is Online Cover Level (m) 11.000

Cellular Storage Structure

Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	.000	2	89.0		2	289.0	1.	500	2	289.0		3	391.0	1.	600		0.0		3	91.0

Hydrock Consultants Ltd		Page 1
	Bristol Airport 12mpps	
	MSCP2 Access South Soakaway 8	
	Q30	Mirro
Date 01/09/2018	Designed by RJH	Drainage
File MSCP2 Access South.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1	•

Summary of Results for 30 year Return Period

Half Drain Time : 123 minutes.

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Infiltration	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	7.327	0.327	2.2		
30	min	Summer	7.420	0.420	2.4		
60	min	Summer	7.493	0.493	2.6		O K
120	min	Summer	7.521	0.521	2.7	29.7	O K
180	min	Summer	7.517	0.517	2.6	29.5	O K
240	min	Summer	7.504	0.504	2.6		O K
360	min	Summer	7.474	0.474	2.6	27.0	O K
480	min	Summer	7.443	0.443	2.5	25.2	O K
600	min	Summer	7.413	0.413	2.4	23.5	O K
720	min	Summer	7.384	0.384	2.4	21.9	O K
960	min	Summer	7.332	0.332	2.2	18.9	O K
1440	min	Summer	7.245	0.245	2.1	14.0	O K
2160	min	Summer	7.151	0.151	1.9	8.6	O K
2880	min	Summer	7.091	0.091	1.7	5.2	O K
4320	min	Summer	7.046	0.046	1.5	2.6	O K
5760	min	Summer	7.037	0.037	1.2	2.1	O K
7200	min	Summer	7.031	0.031	1.0	1.8	O K
8640	min	Summer	7.027	0.027	0.9	1.5	O K
10080	min	Summer	7.024	0.024	0.8	1.4	O K
15	min	Winter	7.370	0.370	2.3	21.1	O K
30	min	Winter	7.476	0.476	2.6	27.1	O K
60	min	Winter	7.563	0.563	2.7	32.1	O K
120	min	Winter	7.600	0.600	2.8	34.2	O K
180	min	Winter	7.593	0.593	2.8	33.8	O K

	Stor	m	Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	74.059	0.0	27
30	min	Summer	48.833	0.0	40
60	min	Summer	30.811	0.0	64
120	min	Summer	18.860	0.0	106
180	min	Summer	13.992	0.0	138
240	min	Summer	11.265	0.0	172
360	min	Summer	8.299	0.0	242
480	min	Summer	6.674	0.0	310
600	min	Summer	5.632	0.0	378
720	min	Summer	4.901	0.0	444
960	min	Summer	3.933	0.0	574
1440	min	Summer	2.881	0.0	824
2160	min	Summer	2.107	0.0	1180
2880	min	Summer	1.687	0.0	1528
4320	min	Summer	1.231	0.0	2204
5760	min	Summer	0.984	0.0	2936
7200	min	Summer	0.827	0.0	3672
8640	min	Summer	0.717	0.0	4352
10080	min	Summer	0.636	0.0	5136
15	min	Winter	74.059	0.0	28
30	min	Winter	48.833	0.0	40
60	min	Winter	30.811	0.0	66
120	min	Winter	18.860	0.0	116
180	min	Winter	13.992	0.0	148

Hydrock Consultants Ltd		Page 2
	Bristol Airport 12mpps	
	MSCP2 Access South Soakaway 8	
	Q30	Mirro
Date 01/09/2018	Designed by RJH	Drainage
File MSCP2 Access South.SRCX	Checked by	Digitiacle
Innovyze	Source Control 2018.1	

Summary of Results for 30 year Return Period

	Stor Even		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
240	min	Winter	7.575	0.575	2.8	32.7	O K
360	min	Winter	7.529	0.529	2.7	30.2	O K
480	min	Winter	7.482	0.482	2.6	27.5	O K
600	min	Winter	7.436	0.436	2.5	24.9	O K
720	min	Winter	7.394	0.394	2.4	22.5	O K
960	min	Winter	7.318	0.318	2.2	18.1	O K
1440	min	Winter	7.199	0.199	2.0	11.3	O K
2160	min	Winter	7.083	0.083	1.7	4.7	O K
2880	min	Winter	7.046	0.046	1.5	2.6	O K
4320	min	Winter	7.034	0.034	1.1	1.9	O K
5760	min	Winter	7.027	0.027	0.9	1.5	O K
7200	min	Winter	7.023	0.023	0.7	1.3	O K
8640	min	Winter	7.020	0.020	0.7	1.1	O K
10080	min	Winter	7.018	0.018	0.6	1.0	O K

	Stor	m	Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
240	min	Winter	11.265	0.0	186
360	min	Winter	8.299	0.0	262
480	min	Winter	6.674	0.0	334
600	min	Winter	5.632	0.0	406
720	min	Winter	4.901	0.0	474
960	min	Winter	3.933	0.0	608
1440	min	Winter	2.881	0.0	860
2160	min	Winter	2.107	0.0	1196
2880	min	Winter	1.687	0.0	1468
4320	min	Winter	1.231	0.0	2208
5760	min	Winter	0.984	0.0	2912
7200	min	Winter	0.827	0.0	3592
8640	min	Winter	0.717	0.0	4392
10080	min	Winter	0.636	0.0	5152

Hydrock Consultants Ltd		Page 3
	Bristol Airport 12mpps	
	MSCP2 Access South Soakaway 8	
	Q30	Micro
Date 01/09/2018	Designed by RJH	Drainage
File MSCP2 Access South.SRCX	Checked by	Diamage
Innovyze	Source Control 2018.1	

 Return
 Reduction
 Region
 England and Wales
 Winter Storms
 Yes

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

 Ratio R
 0.370
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +0

Time Area Diagram

Total Area (ha) 0.153

Time	(mins)	Area									
From:	To:	(ha)									
0	4	0.038	4	8	0.038	8	12	0.038	12	16	0.039

Time Area Diagram

Total Area (ha) 0.000

Hydrock Consultants Ltd		Page 4
	Bristol Airport 12mpps	
	MSCP2 Access South Soakaway 8	
	Q30	Micro
Date 01/09/2018	Designed by RJH	Drainage
File MSCP2 Access South.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1	

Storage is Online Cover Level (m) 11.000

Cellular Storage Structure

Depth	(m) Area	(m²)	Inf. Area	(m²)	Depth	(m) 2	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)	
0.0	000	60.0		60.0	1.	500		60.0		1	84.5	1.	600		0.0		1	84.5	

Hydrock Consultants Ltd		Page 1
•	Bristol Airport 12mpps	
	MSCP2 Soakaway 6	
	Q100 +30%	Micro
Date 12/11/2018	Designed by RJH	
File MSCP2.SRCX	Checked by	Drainage
Innovyze	Source Control 2018.1	'

Half Drain Time : 371 minutes.

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Infiltration	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	7.670	0.670	8.6	184.0	0 K
30	min	Summer	7.883	0.883	9.0	242.4	O K
60	min	Summer	8.087	1.087	9.3	298.4	O K
120	min	Summer	8.251	1.251	9.6	343.5	O K
180	min	Summer	8.305	1.305	9.7	358.3	O K
240	min	Summer	8.311	1.311	9.7	360.0	O K
360	min	Summer	8.285	1.285	9.7	352.7	O K
480	min	Summer	8.248	1.248	9.6	342.6	O K
600	min	Summer	8.211	1.211	9.5	332.5	O K
720	min	Summer	8.176	1.176	9.5	322.9	O K
960	min	Summer	8.110	1.110	9.4	304.7	O K
1440	min	Summer	7.983	0.983	9.1	269.8	O K
2160	min	Summer	7.807	0.807	8.8	221.5	O K
2880	min	Summer	7.650	0.650	8.6	178.6	O K
4320	min	Summer	7.399	0.399	8.1	109.6	O K
5760	min	Summer	7.224	0.224	7.8	61.4	O K
7200	min	Summer	7.111	0.111	7.6	30.5	O K
8640	min	Summer	7.056	0.056	7.5	15.3	O K
10080	min	Summer	7.046	0.046	6.9	12.5	O K
15	min	Winter	7.755	0.755	8.7	207.3	ОК
30	min	Winter	7.996	0.996	9.2	273.5	ОК
60	min	Winter	8.231	1.231	9.6	338.0	ОК
120	min	Winter	8.429	1.429	9.9	392.2	ОК
180	min	Winter	8.502	1.502	10.0	412.5	O K

	Stor	m	Rain	Flooded	Time-Peak		
	Even	t	(mm/hr)	Volume	(mins)		
				(m³)			
		Summer		0.0	29		
			83.061	0.0	43		
60		Summer	52.662	0.0	72		
		Summer	32.210	0.0	128		
180	min	Summer	23.799	0.0	184		
240	min	Summer	19.065	0.0	242		
360	min	Summer	13.962	0.0	316		
480	min	Summer	11.178	0.0	380		
600	min	Summer	9.399	0.0	444		
720	min	Summer	8.153	0.0	510		
960	min	Summer	6.510	0.0	648		
1440	min	Summer	4.731	0.0	922		
2160	min	Summer	3.432	0.0	1320		
2880	min	Summer	2.730	0.0	1708		
4320	min	Summer	1.973	0.0	2428		
5760	min	Summer	1.566	0.0	3120		
7200	min	Summer	1.308	0.0	3760		
8640	min	Summer	1.129	0.0	4408		
10080	min	Summer	0.998	0.0	5120		
15	min	Winter	124.836	0.0	29		
30	min	Winter	83.061	0.0	43		
60	min	Winter	52.662	0.0	70		
120	min	Winter	32.210	0.0	126		
180	min	Winter	23.799	0.0	182		

Hydrock Consultants Ltd							
•	Bristol Airport 12mpps						
	MSCP2 Soakaway 6						
	Q100 +30%	Micro					
Date 12/11/2018	Designed by RJH						
File MSCP2.SRCX	Checked by	Drainage					
Innovyze	Source Control 2018.1	'					

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	${\tt Infiltration}$	Volume	
			(m)	(m)	(1/s)	(m³)	
0.40			0 501	1 501	10.0	410 0	0 "
		Winter			10.0	418.0	O K
360	min	Winter	8.510	1.510	10.0	414.3	0 K
480	min	Winter	8.460	1.460	10.0	400.9	O K
600	min	Winter	8.414	1.414	9.9	388.2	O K
720	min	Winter	8.366	1.366	9.8	375.0	O K
960	min	Winter	8.270	1.270	9.6	348.7	O K
1440	min	Winter	8.079	1.079	9.3	296.4	O K
2160	min	Winter	7.815	0.815	8.9	223.8	O K
2880	min	Winter	7.588	0.588	8.5	161.4	O K
4320	min	Winter	7.245	0.245	7.9	67.2	O K
5760	min	Winter	7.058	0.058	7.5	15.9	O K
7200	min	Winter	7.043	0.043	6.5	11.8	O K
8640	min	Winter	7.037	0.037	5.6	10.2	O K
10080	min	Winter	7.033	0.033	4.9	9.0	O K

	Stor	m	Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
240	min	Winter	19.065	0.0	238
360	min	Winter	13.962	0.0	346
480	min	Winter	11.178	0.0	402
600	min	Winter	9.399	0.0	472
720	min	Winter	8.153	0.0	550
960	min	Winter	6.510	0.0	704
1440	min	Winter	4.731	0.0	998
2160	min	Winter	3.432	0.0	1416
2880	min	Winter	2.730	0.0	1804
4320	min	Winter	1.973	0.0	2512
5760	min	Winter	1.566	0.0	3008
7200	min	Winter	1.308	0.0	3680
8640	min	Winter	1.129	0.0	4288
10080	min	Winter	0.998	0.0	5144

Hydrock Consultants Ltd						
	Bristol Airport 12mpps					
	MSCP2 Soakaway 6					
	Q100 +30%	Micro				
Date 12/11/2018	Designed by RJH					
File MSCP2.SRCX	Checked by	Drainage				
Innovyze	Source Control 2018.1					

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.370 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +30

Time Area Diagram

Total Area (ha) 0.837

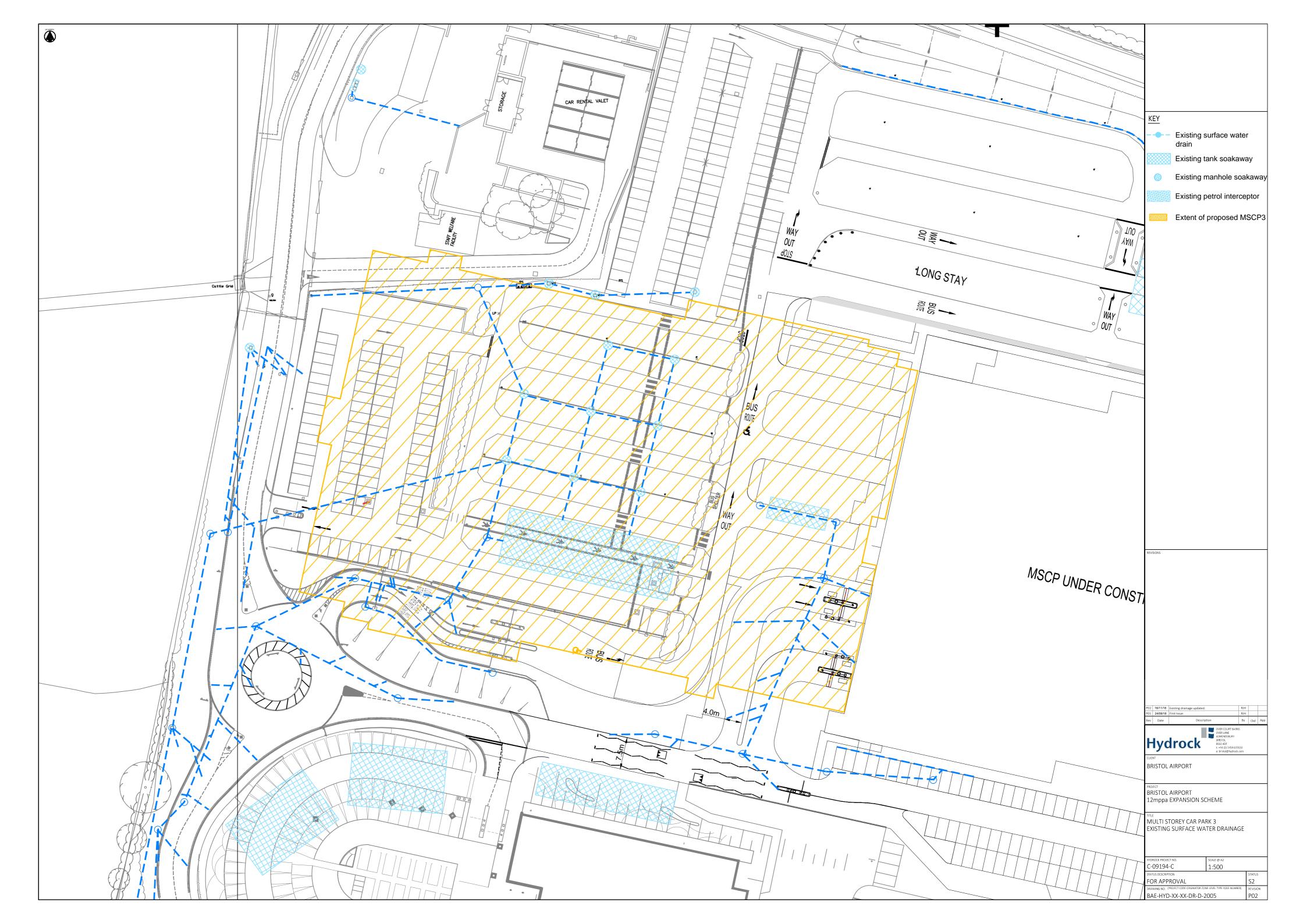
Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To: (ha)		From:	To:	(ha)	From: To:		(ha)
0	4	0.209	4	8	0.209	8	12	0.209	12	16	0.210

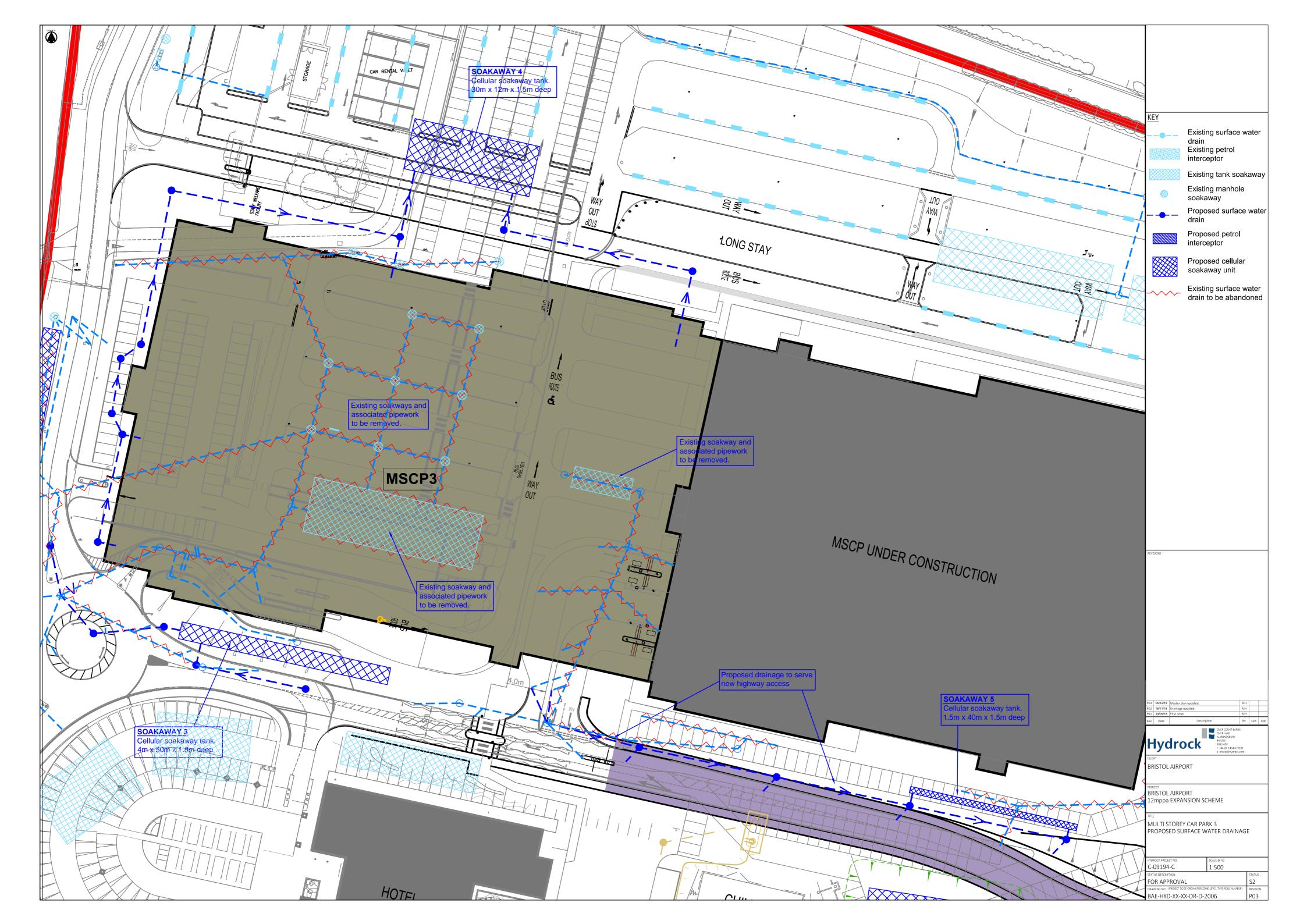
Time Area Diagram

Total Area (ha) 0.000

Hydrock Consultants Ltd						
	Bristol Airport 12mpps					
	MSCP2 Soakaway 6					
	Q100 +30%	Micro				
Date 12/11/2018	Designed by RJH	Drainage				
File MSCP2.SRCX	Checked by	Dialilade				
Innovyze	Source Control 2018.1	1				

Storage is Online Cover Level (m) 11.000


Cellular Storage Structure


Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.	.000	2	89.0		2	289.0	1.	500	2	289.0		3	391.0	1.	600		0.0		3	91.0

Appendix F – MSCP3

Reference	Title
BAE-HYD-XX-XX-DR-D-2005-P02	Existing Surface Water Drainage
BAE-HYD-XX-XX-DR-D-2006-P03	Proposed Surface Water Drainage
MSCP3.SRCX	MSCP3 Soakaway 4 – Q30
MSCP3.SRCX	MSCP3 Soakaway 4 – Q100 +30%
MSCP3 Access South.SRCX	MSCP3 Access South Soakaway 5 - Q30
MSC32 Access South.SRCX	MSCP3 Access South Soakaway 5 – Q100 +30%

Hydrock Consultants Ltd	Page 1	
•	Bristol Airport 12mpps	
	MSCP3 Soakaway 4	
	Q100 +30%	Mirro
Date 12/11/2018	Designed by RJH	··········
File MSCP3.SRCX	Checked by	Drainage
Innovyze	Source Control 2018.1	'

Half Drain Time : 402 minutes.

	Stor Even		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
			, ,	, ,		, ,	
15	min	Summer	7.713	0.713	10.8	243.8	O K
30	min	Summer	7.942	0.942	11.3	322.1	O K
60	min	Summer	8.163	1.163	11.8	397.9	O K
120	min	Summer	8.346	1.346	12.2	460.2	O K
180	min	Summer	8.409	1.409	12.3	482.0	O K
240	min	Summer	8.423	1.423	12.3	486.5	O K
360	min	Summer	8.401	1.401	12.3	479.0	O K
480	min	Summer	8.364	1.364	12.2	466.5	O K
600	min	Summer	8.326	1.326	12.1	453.4	O K
720	min	Summer	8.289	1.289	12.0	441.0	O K
960	min	Summer	8.221	1.221	11.9	417.6	O K
1440	min	Summer	8.092	1.092	11.6	373.4	O K
2160	min	Summer	7.911	0.911	11.2	311.7	O K
2880	min	Summer	7.749	0.749	10.9	256.2	O K
4320	min	Summer	7.483	0.483	10.3	165.2	O K
5760	min	Summer	7.289	0.289	9.9	98.8	O K
7200	min	Summer	7.157	0.157	9.6	53.6	O K
8640	min	Summer	7.077	0.077	9.4	26.2	O K
10080	min	Summer	7.049	0.049	9.1	16.6	O K
15	min	Winter	7.803	0.803	11.0	274.7	O K
30	min	Winter	8.062	1.062	11.5	363.4	O K
60	min	Winter	8.317	1.317	12.1	450.4	O K
120	min	Winter	9.119	2.119	12.5	524.9	O K
180	min	Winter	11.028	4.028	12.5	554.4	FLOOD

	Stor	m	Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
		Summer		0.0	33
30		Summer	83.061	0.0	47
60	min	Summer	52.662	0.0	74
120	min			0.0	130
180	min	Summer	23.799	0.0	186
240	min	Summer	19.065	0.0	244
360	min	Summer	13.962	0.0	328
480	min	Summer	11.178	0.0	390
600	min	Summer	9.399	0.0	452
720	min	Summer	8.153	0.0	520
960	min	Summer	6.510	0.0	656
1440	min	Summer	4.731	0.0	930
2160	min	Summer	3.432	0.0	1332
2880	min	Summer	2.730	0.0	1716
4320	min	Summer	1.973	0.0	2464
5760	min	Summer	1.566	0.0	3168
7200	min	Summer	1.308	0.0	3824
8640	min	Summer	1.129	0.0	4432
10080	min	Summer	0.998	0.0	5080
15	min	Winter	124.836	0.0	33
30	min	Winter	83.061	0.0	47
60	min	Winter	52.662	0.0	74
120	min	Winter	32.210	0.0	130
180	min	Winter	23.799	30.0	186

Hydrock Consultants Ltd		Page 2
•	Bristol Airport 12mpps	
	MSCP3 Soakaway 4	
	Q100 +30%	Micro
Date 12/11/2018	Designed by RJH	
File MSCP3.SRCX	Checked by	Drainage
Innovvze	Source Control 2018.1	'

	Stor		Max	Max	Max	Max	Status
	Even	C .	Level	-	Infiltration		
			(m)	(m)	(1/s)	(m³)	
240	min	Winter	11.037	4.037	12.5	564.2	FLOOD
360	min	Winter	11.037	4.037	12.5	563.5	FLOOD
480	min	Winter	11.021	4.021	12.5	547.5	FLOOD
600	min	Winter	11.004	4.004	12.5	530.5	FLOOD
720	min	Winter	8.501	1.501	12.5	513.2	O K
960	min	Winter	8.404	1.404	12.3	480.1	O K
1440	min	Winter	8.211	1.211	11.9	414.1	O K
2160	min	Winter	7.939	0.939	11.3	321.3	O K
2880	min	Winter	7.703	0.703	10.8	240.3	O K
4320	min	Winter	7.333	0.333	10.0	113.9	O K
5760	min	Winter	7.100	0.100	9.5	34.2	O K
7200	min	Winter	7.046	0.046	8.7	15.7	O K
8640	min	Winter	7.040	0.040	7.4	13.5	O K
10080	min	Winter	7.035	0.035	6.6	12.0	O K

	Stor	m	Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
240	min	Winter	19.065	39.8	242
360	min	Winter	13.962	39.1	350
480	min	Winter	11.178	23.1	448
600	min	Winter	9.399	6.1	482
720	min	Winter	8.153	0.0	556
960	min	Winter	6.510	0.0	710
1440	min	Winter	4.731	0.0	1010
2160	min	Winter	3.432	0.0	1432
2880	min	Winter	2.730	0.0	1828
4320	min	Winter	1.973	0.0	2556
5760	min	Winter	1.566	0.0	3128
7200	min	Winter	1.308	0.0	3664
8640	min	Winter	1.129	0.0	4328
10080	min	Winter	0.998	0.0	5120

Hydrock Consultants Ltd		Page 3
•	Bristol Airport 12mpps	
	MSCP3 Soakaway 4	
	Q100 +30%	Micro
Date 12/11/2018	Designed by RJH	
File MSCP3.SRCX	Checked by	Drainage
Innovyze	Source Control 2018.1	•

 Return
 Reinfall Model
 FSR
 Winter Storms
 Yes

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

 Ratio R
 0.370
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +30

Time Area Diagram

Total Area (ha) 1.114

Time	(mins)	Area												
From:	To:	(ha)												
0	4	0.222	4	8	0.223	8	12	0.223	12	16	0.223	16	20	0.223

Time Area Diagram

Total Area (ha) 0.000

Hydrock Consultants Ltd		Page 4
	Bristol Airport 12mpps	
	MSCP3 Soakaway 4	
	Q100 +30%	Micro
Date 12/11/2018	Designed by RJH	Drainage
File MSCP3.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1	'

Storage is Online Cover Level (m) 11.000

Cellular Storage Structure

Depth (m) Area	(m²)	Inf. Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)	
0.0	00	360.0		360.0	1.	500	3	60.0		4	86.0	1.	600		0.0		4	86.0	

Hydrock Consultants Ltd	Page 1	
	Bristol Airport 12mpps	
	MSCP3 Access South Soakaway 5	
	Q30	Mirro
Date 01/09/2018	Designed by RJH	Drainage
File MSCP3 ACCESS SOUTH.SRCX	Checked by	pramage
Innovyze	Source Control 2018.1	•

Summary of Results for 30 year Return Period

Half Drain Time : 136 minutes.

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Infiltration	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	7.378	0.378	2.3	21.6	O K
30	min	Summer	7.487	0.487	2.6	27.7	O K
60	min	Summer	7.574	0.574	2.8	32.7	O K
120	min	Summer	7.611	0.611	2.8	34.8	O K
180	min	Summer	7.609	0.609	2.8	34.7	O K
240	min	Summer	7.597	0.597	2.8	34.0	O K
360	min	Summer	7.566	0.566	2.7	32.2	O K
480	min	Summer	7.533	0.533	2.7	30.4	O K
600	min	Summer	7.502	0.502	2.6	28.6	O K
720	min	Summer	7.471	0.471	2.5	26.9	O K
960	min	Summer	7.415	0.415	2.4	23.7	O K
1440	min	Summer	7.320	0.320	2.2	18.2	O K
2160	min	Summer	7.213	0.213	2.0	12.1	O K
2880	min	Summer	7.138	0.138	1.8	7.9	O K
4320	min	Summer	7.057	0.057	1.7	3.3	ОК
5760	min	Summer	7.043	0.043	1.4	2.4	ОК
7200	min	Summer	7.036	0.036	1.2	2.0	ОК
8640	min	Summer	7.031	0.031	1.0	1.8	ОК
10080	min	Summer	7.028	0.028	0.9	1.6	ОК
15	min	Winter	7.427	0.427	2.5	24.4	ОК
30	min	Winter	7.551	0.551	2.7	31.4	ОК
		Winter			2.9		
		Winter			3.0		O K
		Winter			3.0	39.9	ОК

	Stor	m	Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	74.059	0.0	27
30	min	Summer	48.833	0.0	40
60	min	Summer	30.811	0.0	66
120	min	Summer	18.860	0.0	110
180	min	Summer	13.992	0.0	142
240	min	Summer	11.265	0.0	176
360	min	Summer	8.299	0.0	244
480	min	Summer	6.674	0.0	314
600	min	Summer	5.632	0.0	380
720	min	Summer	4.901	0.0	448
960	min	Summer	3.933	0.0	580
1440	min	Summer	2.881	0.0	834
2160	min	Summer	2.107	0.0	1196
2880	min	Summer	1.687	0.0	1556
4320	min	Summer	1.231	0.0	2212
5760	min	Summer	0.984	0.0	2936
7200	min	Summer	0.827	0.0	3672
8640	min	Summer	0.717	0.0	4400
10080	min	Summer	0.636	0.0	5048
15	min	Winter	74.059	0.0	28
30	min	Winter	48.833	0.0	40
60	min	Winter	30.811	0.0	66
120	min	Winter	18.860	0.0	118
180	min	Winter	13.992	0.0	150

Hydrock Consultants Ltd	Page 2	
	Bristol Airport 12mpps	
	MSCP3 Access South Soakaway 5	
	Q30	Mirro
Date 01/09/2018	Designed by RJH	Drainage
File MSCP3 ACCESS SOUTH.SRCX	Checked by	Digitiacle
Innovyze	Source Control 2018.1	1

Summary of Results for 30 year Return Period

	Storm Event			Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
0.40						20.0	
240	mın	Winter	7.682	0.682	3.0	38.9	O K
360	min	Winter	7.636	0.636	2.9	36.3	O K
480	min	Winter	7.587	0.587	2.8	33.4	O K
600	min	Winter	7.538	0.538	2.7	30.7	O K
720	min	Winter	7.493	0.493	2.6	28.1	O K
960	min	Winter	7.411	0.411	2.4	23.4	O K
1440	min	Winter	7.278	0.278	2.1	15.9	O K
2160	min	Winter	7.141	0.141	1.8	8.0	O K
2880	min	Winter	7.059	0.059	1.7	3.4	O K
4320	min	Winter	7.039	0.039	1.3	2.2	O K
5760	min	Winter	7.031	0.031	1.0	1.8	O K
7200	min	Winter	7.026	0.026	0.9	1.5	O K
8640	min	Winter	7.023	0.023	0.7	1.3	O K
10080	min	Winter	7.020	0.020	0.7	1.1	O K

	Stor	m	Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
240	min	Winter	11.265	0.0	188
360	min	Winter	8.299	0.0	264
480	min	Winter	6.674	0.0	338
600	min	Winter	5.632	0.0	410
720	min	Winter	4.901	0.0	480
960	min	Winter	3.933	0.0	616
1440	min	Winter	2.881	0.0	874
2160	min	Winter	2.107	0.0	1236
2880	min	Winter	1.687	0.0	1532
4320	min	Winter	1.231	0.0	2204
5760	min	Winter	0.984	0.0	2936
7200	min	Winter	0.827	0.0	3624
8640	min	Winter	0.717	0.0	4344
10080	min	Winter	0.636	0.0	5096

Hydrock Consultants Ltd	Page 3	
	Bristol Airport 12mpps	
	MSCP3 Access South Soakaway 5	
	Q30	Micro
Date 01/09/2018	Designed by RJH	Drainage
File MSCP3 ACCESS SOUTH.SRCX	Checked by	Diamage
Innovyze	Source Control 2018.1	

 Return
 Reduction
 Region
 England and Wales
 Winter Storms
 Yes

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

 Ratio R
 0.370
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +0

Time Area Diagram

Total Area (ha) 0.175

Time	(mins)	Area									
From:	To:	(ha)									
0	4	0.044	4	8	0.044	8	12	0.044	12	16	0.043

Time Area Diagram

Total Area (ha) 0.000

Hydrock Consultants Ltd	Page 4	
	Bristol Airport 12mpps	
	MSCP3 Access South Soakaway 5	
	Q30	Micro
Date 01/09/2018	Designed by RJH	Drainage
File MSCP3 ACCESS SOUTH.SRCX	Checked by	Dialilade
Innovyze	Source Control 2018.1	·

Storage is Online Cover Level (m) 11.000

Cellular Storage Structure

Depth	(m) Area	(m²)	Inf. Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)	
0.0	000	60.0		60.0	1.	500		60.0		1	84.5	1.	600		0.0		1	84.5	

Hydrock Consultants Ltd	Page 1	
	Bristol Airport 12mpps	
	MSCP3 Access South Soakaway 5	
	Q100 +30%	Mirro
Date 12/11/2018	Designed by RJH	Drainage
File MSCP3 Access South.SRCX	Checked by	Digitiacle
Innovyze	Source Control 2018.1	'

Half Drain Time : 181 minutes.

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Infiltration	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	7.659	0.659	2.9	37.6	O K
30	min	Summer	7.858	0.858	3.4	48.9	O K
60	min	Summer	8.033	1.033	3.7	58.9	O K
120	min	Summer	8.135	1.135	4.0	64.7	O K
180	min	Summer	8.143	1.143	4.0	65.2	O K
240	min	Summer	8.131	1.131	4.0	64.4	O K
360	min	Summer	8.093	1.093	3.9	62.3	O K
480	min	Summer	8.046	1.046	3.8	59.6	O K
600	min	Summer	7.999	0.999	3.7	57.0	O K
720	min	Summer	7.955	0.955	3.6	54.5	O K
960	min	Summer	7.874	0.874	3.4	49.8	O K
1440	min	Summer	7.735	0.735	3.1	41.9	O K
2160	min	Summer	7.571	0.571	2.8	32.5	O K
2880	min	Summer	7.444	0.444	2.5	25.3	O K
4320	min	Summer	7.267	0.267	2.1	15.2	O K
5760	min	Summer	7.152	0.152	1.9	8.7	O K
7200	min	Summer	7.080	0.080	1.7	4.6	O K
8640	min	Summer	7.049	0.049	1.6	2.8	O K
10080	min	Summer	7.043	0.043	1.4	2.5	O K
15	min	Winter	7.742	0.742	3.1	42.3	O K
30	min	Winter	7.968	0.968	3.6	55.2	O K
60	min	Winter	8.171	1.171	4.0	66.7	O K
120	min	Winter	8.299	1.299	4.3	74.0	O K
180	min	Winter	8.308	1.308	4.3	74.5	O K

	Stor	m	Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer		0.0	28
30	min	Summer	83.061	0.0	41
60	min	Summer	52.662	0.0	68
120	min	Summer	32.210	0.0	120
180	min	Summer	23.799	0.0	152
240	min	Summer	19.065	0.0	184
360	min	Summer	13.962	0.0	252
480	min	Summer	11.178	0.0	322
600	min	Summer	9.399	0.0	390
720	min	Summer	8.153	0.0	460
960	min	Summer	6.510	0.0	594
1440	min	Summer	4.731	0.0	856
2160	min	Summer	3.432	0.0	1236
2880	min	Summer	2.730	0.0	1600
4320	min	Summer	1.973	0.0	2336
5760	min	Summer	1.566	0.0	3048
7200	min	Summer	1.308	0.0	3688
8640	min	Summer	1.129	0.0	4368
10080	min	Summer	0.998	0.0	5136
15	min	Winter	124.836	0.0	28
30	min	Winter	83.061	0.0	41
60	min	Winter	52.662	0.0	68
120	min	Winter	32.210	0.0	120
180	min	Winter	23.799	0.0	164

Hydrock Consultants Ltd	Page 2	
	Bristol Airport 12mpps	
	MSCP3 Access South Soakaway 5	
	Q100 +30%	Mirro
Date 12/11/2018	Designed by RJH	Drainage
File MSCP3 Access South.SRCX	Checked by	Diamage
Innovyze	Source Control 2018.1	

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Infiltration	Volume	
			(m)	(m)	(1/s)	(m³)	
240	min	Winter	8.292	1.292	4.3	73.7	O K
360	min	Winter	8.241	1.241	4.2	70.7	O K
480	min	Winter	8.174	1.174	4.0	66.9	O K
600	min	Winter	8.104	1.104	3.9	63.0	O K
720	min	Winter	8.039	1.039	3.8	59.2	O K
960	min	Winter	7.921	0.921	3.5	52.5	O K
1440	min	Winter	7.726	0.726	3.1	41.4	O K
2160	min	Winter	7.508	0.508	2.6	28.9	O K
2880	min	Winter	7.351	0.351	2.3	20.0	O K
4320	min	Winter	7.145	0.145	1.9	8.2	O K
5760	min	Winter	7.049	0.049	1.6	2.8	O K
7200	min	Winter	7.041	0.041	1.4	2.3	O K
8640	min	Winter	7.036	0.036	1.2	2.0	O K
10080	min	Winter	7.031	0.031	1.0	1.8	O K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Time-Peak (mins)
240	min	Winter	19.065	0.0	194
360	min	Winter	13.962	0.0	270
480	min	Winter	11.178	0.0	346
600	min	Winter	9.399	0.0	420
720	min	Winter	8.153	0.0	492
960	min	Winter	6.510	0.0	634
1440	min	Winter	4.731	0.0	906
2160	min	Winter	3.432	0.0	1296
2880	min	Winter	2.730	0.0	1672
4320	min	Winter	1.973	0.0	2380
5760	min	Winter	1.566	0.0	2928
7200	min	Winter	1.308	0.0	3624
8640	min	Winter	1.129	0.0	4384
10080	min	Winter	0.998	0.0	5136

Hydrock Consultants Ltd	Page 3	
	Bristol Airport 12mpps	
	MSCP3 Access South Soakaway 5	
	Q100 +30%	Micro
Date 12/11/2018	Designed by RJH	Drainage
File MSCP3 Access South.SRCX	Checked by	Diamage
Innovyze	Source Control 2018.1	

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.370 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +30

Time Area Diagram

Total Area (ha) 0.175

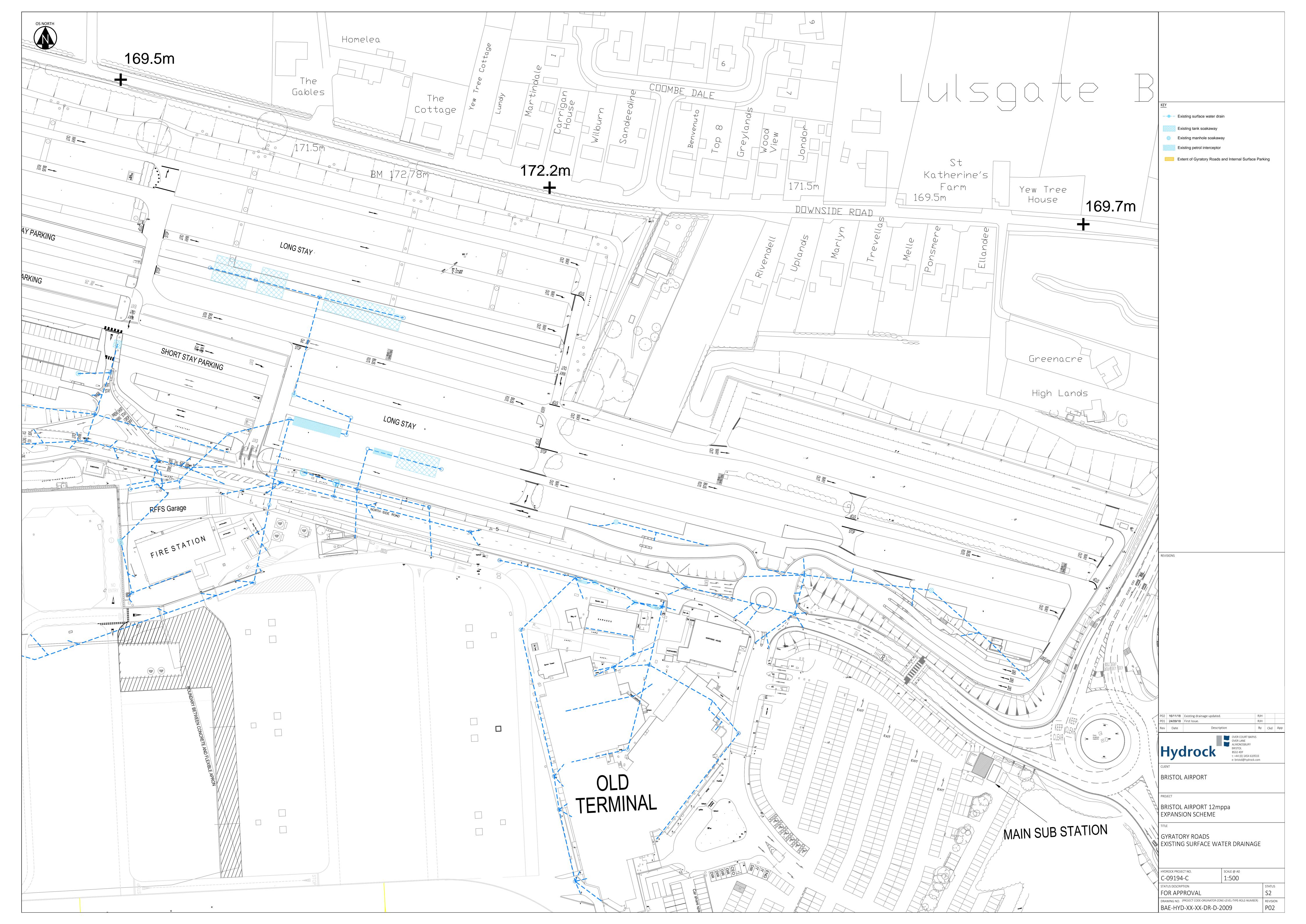
Time	(mins)	Area									
From:	To:	(ha)									
0	4	0.044	4	8	0.044	8	12	0.044	12	16	0.043

Time Area Diagram

Total Area (ha) 0.000

Hydrock Consultants Ltd		Page 4
	Bristol Airport 12mpps	
	MSCP3 Access South Soakaway 5	
	Q100 +30%	Mirro
Date 12/11/2018	Designed by RJH	Drainage
File MSCP3 Access South.SRCX	Checked by	Diamage
Innovyze	Source Control 2018.1	<u>'</u>

Storage is Online Cover Level (m) 11.000


Cellular Storage Structure

Depth	(m) Area	(m²)	Inf. Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)	
0.0	000	60.0		60.0	1.	500		60.0		1	84.5	1.	600		0.0		1	84.5	

Appendix G – New Gyratory Road

Reference	Title
BAE-HYD-XX-XX-DR-D-2009-P02	Existing Surface Water Drainage
BAE-HYD-XX-XX-DR-D-2010-P03	Proposed Surface Water Drainage
GYRATORY.SRCX	Gyratory Soakaway 9x – Q30
GYRATORY.SRCX	Gyratory Soakaway 49x- Q100 +30%

