

NEW CITY COURT

Circular Economy and Whole Life-Cycle Carbon Assessment July 2021

chapmanbdsp

55287 - New City Court Circular Economy and Whole Life Carbon Statement

Revision	Issued for	Date	Author	Checked by
0	Planning	13/04/21	EV	PP
1	Planning	15/04/21	EV	PP
2	Planning addendum	16/07/21	PP	EV

chapmanbdsp 40 Gracechurch Street, London EC3V 0BT T:020 768 4800 www.chapmanbdsp.com

Contents

1	Executive summary	1
2	Introduction	2
2.1	Description of Development	2
2.2	Method statement	2
2.3	Circular economy aspirations	2
3	Strategic approach	4
3.1	Existing site opportunities	4
3.2	Proposed design considerations	4
3.3	Operational waste	5
3.4	GLA Circular Economy Statement Guidance Table 1	7
4	Circular economy commitments	8
4.1	Key Commitments: GLA Circular Economy Statement Guidance Table 2	8
4.2	Numerical targets and commitments	
4.3	Implementation strategy	14
4.4	End of life strategy	
5	Whole life carbon assessment	
5.1	Results	
5.2	Actions and opportunities to reduce Embodied carbon	17
6	Appendices	
6.1	Appendix 1 - Assessment 1 - WLC SAP 10 scenario	
6.2	Appendix 2 - Assessment 2 - WLC grid decarbonisation scenario	
6.3	Appendix 3 - EPD sources	
6.4	Appendix 4 - Areas for storage	23
6.5	Appendix 5 - Pre-demolition audit	
6.6	Appendix 6 - Delivery, Servicing and Waste Management Plan	
6.7	Appendix 7 - Building weight calculation	27
6.8	Appendix 8 - Lean design options appraisal	
6.9	Appendix 9 - Soft spots assessment	

1 Executive summary

This Circular Economy and Whole Life Carbon Statement has been prepared to support the planning application of the proposed development at New City Court for GPE (St Thomas Street) Limited ('the Applicant'). Redevelopment to include demolition of the 1980s office buildings and erection of a 26-storey building (plus mezzanine and two basement levels), restoration and refurbishment of the listed terrace (nos. 4-16 St Thomas Street), and redevelopment of Keats House (nos. 24-26 St Thomas Street) with removal, relocation and reinstatement of the historic façade on a proposed building, to provide office floorspace, flexible office/retail floorspace, restaurant/café floorspace and a public rooftop garden, associated public realm and highways improvements, provision for a new access to the Borough High Street entrance to the Underground Station, cycling parking, car parking, service, refuse and plant areas, and all ancillary or associated works.

The building circularity for the proposed scheme follows the following principles and approach:

Conserve resources, increase efficiency and source sustainably

- Minimise the quantity of the material used such that the whole life carbon doesn't not exceed the Greater London Authority's WLC aspirational benchmarks.
- The aim is to further reduce the embodied carbon to meet Royal Institute of British Architects (RIBA) 2030 target of 500 kgCO₂/m².
- The use of recycled content has been maximised. It exceeds the RICS minimum guidance and the industry standards

The material will be procured sustainably. All timber or timber based products will be (Forest Stewardship Council (FSC) or Programme for the Endorsement of Forest Certification (PEFC) certified. Suppliers with ISO 14001 or equivalent environmental management system will be used for material procurement.

Design to eliminate waste

- The building layers with longer life expectancy will be designed for longevity, flexibility and adaptability and layers with shorter life expectancy for ease of maintenance, recoverability and replacement.
- Demountable slabs and soft spots will be provided in structure to provide flexibility of use.
- Building Information Modelling and Digital Twin methods may be explored to reduce construction waste.
- No more than 7.5 m³/100m² GIFA or 6.5 tonnes/100m² GIFA of waste will be generated during construction works.

Manage waste sustainably

- At least 97% of the waste can be diverted from going into landfill or for incineration as per the predemolition desktop analysis.
- The minimum aim is to divert 90% (by tonnage) of the non-demolition waste and 95% (by tonnage) of the demolition waste from going into the landfill.
- A resource efficiency and site waste management plan will be implemented on site to minimise waste generation and then manage waste responsibly.
- A operational waste strategy will be implemented to ensure municipal waste is managed sustainably. Tenants will be provided with a recycling facility and separate food and glass bins.

2 Introduction

The objective of the report is to summarise the circular economy principles considered in the design of the scheme and the material and waste targets to be achieved at the practical completion of the project.

Description of Development 2.1

The proposed redevelopment of New City Court will include demolition of the 1980s office buildings and erection of a 26-storey building (plus mezzanine and two basement levels), restoration and refurbishment of the listed terrace (nos. 4-16 St Thomas Street), and redevelopment of Keats House (nos. 24-26 St Thomas Street) with removal, relocation and reinstatement of the historic façade on a proposed building, to provide office floorspace, flexible office/retail floorspace, restaurant/café floorspace and a public rooftop garden, associated public realm and highways improvements, provision for a new access to the Borough High Street entrance to the Underground Station, cycling parking, car parking, service, refuse and plant areas, and all ancillary or associated works.

Summary of Proposed Amendments

It is proposed to amend the Proposed Development to incorporate a series of improvements to the detailed design and energy strategy.

The Proposed Amendments include the following:

- Improvements to the detailed design of the southern elevation, including provision of integrated photovoltaic panels and balconies, enhancing the operational energy strategy and urban greening factor
- Reconfiguration of basement levels to facilitate the relocation of the Keats House façade, improve building ٠ management facilities and respond to UKPN comments
- Improvements to Building Management facilities to enhance access and security measures
- Development of facade to allow for safety egress from the BMU and overall maintenance of the building envelope
- Introduction of additional security measures, including bollards, along the base of the building at St Thomas Street and King's Head Yard

Proposed floor areas

Table 1 Proposed floor areas.

Use	Use Class	Proposed GIA (m ²)		
Office	E	44,141		
Affordable workspace	E	4,908		
Flexible office / retail	E	328		
Food and drink	E	421		
Shared rooftop garden access	-	183		
Shared facilities and plant	-	5,480		
Total		55,461		

2.2 Method statement

A holistic approach has been adopted to establish the approach and targets for the project. The focus has been to create an architecture where the circular economy principles could be embedded in the design rather than an afterthought. Having a clear understanding of the objective of the London Plan policies SI2 and SI7, the concepts of whole life carbon and circular economy were considered comprehensively. The design approach follows the following framework:

- **Retain** Retaining and repurposing existing building on site.
- **Reuse** Reusing existing structure as much as practically feasible, reusing existing transformers/generators,
- Recycle Recycling the waste generated from strip out and demolition as well as use recycled material for construction as much as possible.

Discussions were held with the key stakeholders for establishing an integrated approach tailored for the project in specific. Chapmanbdsp, the sustainability champions for the scheme, held focussed workshops for the team to have a collaborative discussion. Some of these are listed below:

23/06/20: Attended by AHMM (architect), AKT (structural engineer), GPE (client) and chapmanbdsp (mechanical and electrical consultant) - Sustainability workshop 11/01/21: Attended by AHMM (architect), AKT (structural engineer), GPE (client) and chapmanbdsp (mechanical and electrical consultant) - Whole Life Carbon and Circular Economy workshop 25/03/21: Attended by AHMM (architect), AKT (structural engineer) and chapmanbdsp (mechanical and electrical consultant) - Sustainability Review workshop

The strategic approach was discussed at these workshops to set the key targets and required actions for achieving those targets in practice. These discussions were followed up in the weekly design team meetings and more one to one informal discussion. The outputs of these discussions are included in Tables 1 and 2 appended to this report.

Additional workshops are to be undertaken at the detailed design stages with the team and the main contractor. This report and the targets set as a part of this process will be readdressed at further stages of the project such that the targets are delivered at the practical completion of the project.

2.3 **Circular economy aspirations**

The client is committed to optimise material use to minimise upfront embodied carbon to the limits set out by Royal Institute of British Architects (RIBA) and Low Energy Transformation Initiative (LETI) as well as minimise construction waste and divert up to 100% of the demolition and construction waste from landfill. In order to achieve this challenge, the following strategy has been proposed in agreement with the key stakeholders for the project:

- A Pre-demolition audit has been carried out for the demoiltion works. The waste management strategy follows the hierarchy of prevention, reuse, recycle, recover and dispose. Based on the waste forecast, a recycling target of 97% could be achieved. A further audit will be carried out at the detailed design stage, prior to construction.
- New City Court will be assessed under BREEAM 2018 New Construction. The assessments, highest possible credits under Material and Waste categories have been targeted. Early engagement with the contractor will be sought to ensure the targeted credits are secured and if possible, pick up additional exemplary level credits. 1
- The aspiration is to divert 90% (by tonnage) of the non-demolition waste and 95% (by tonnage) of the demolition waste from going into the landfill.
- The contractor will be required to prepare a site waste management plan/resource management plan to minimise waste generated through construction activities. The waste generated on site will be monitor and segregated and managed sustainably. The target will be to produce no more than 7.5 m3/100m2 GIFA or 6.5 tonnes/100m2 GIFA during the construction.

reusing the strip out materials on site and off site. Thus, reducing embodied carbon of the scheme.

• With regards to contributing towards circularity the recycled content within the construction elements will be maximised as much as possible. The table below indicates the minimum levels recommended by RICS guidance as compared to the recycled proportion and cement replacement in form of ground granulated blast-furnace slag (GGBS) proposed for the project.

Component	RICS guidance	New City Court
Raft foundation	20% cement replacement	75% GGBS
Pile foundation	20% cement replacement	50% GGBS
Pile wall	20% cement replacement	50% GGBS
Columns	20% cement replacement	25-50% GGBS
Slabs (PT)	20% cement replacement	25% GGBS
Slabs (non-PT)	20% cement replacement	25-50% GGBS
Steel reinforcement	97% recycled	97% recycled

Table 2 Proposed recycled content for the scheme

- Modern methods of construction and offsite construction opportunities to be considered during detailed design stages to further optimise the material use and reduce construction waste. As the increased proportion of GGBS can affect the curing time and therefore the construction program, offsite construction can be instrumental in overcoming these challenges.
- The design life of the building is assumed to be 60 years; however, the shell may last up to 200 years. Though it is impossible to predict what construction practices will be in effect at the end of the life of building, but it is expected that with the proposed construction at least 50% of the building material would be recoverable and reusable for future construction.

3

3 Strategic approach

3.1 Existing site opportunities

The existing buildings on site, apart from Georgian terraces and Keats House, do not provide financial viability for the site setting and value, and the structures contained within the low rise buildings would not be able to be re-used to create the new building.

The design of the development has therefore focused on the efficiency of the new elements and their carbon impact.

The demolition contractors have carried out an audit for the waste streams arising from the strip out and demolition works and identified a waste hierarchy of prevention, reuse, recycle, recover, and dispose. It also identifies the recycling and reclamation centres in proximity of the site for offsite recycle and reuse.

The following sections identify the approach to reuse of various parts of the development.

3.1.1 Georgian terrace

The analysis of the Grade II Listed Georgian Terrace by both Donald Insall Associates (DIA) and KM Heritage (KMH), together with historical record drawings from the 1980s redevelopment, has confirmed the extent to which these buildings were largely altered/rebuilt in the 80s. Little original fabric other than the north St. Thomas Street facade remains, alongside the memory of the original plan form to some levels, this is combined with some works which would sit outside current norms in a competent approach to working with listed buildings.

Most retained plan form exists at ground floor level, although the back line has been moved to create a circulation zone connecting all properties to the 1980s New City Court building. The ground floor is envisaged to be used as the model for the reinstatement of upper level plans, primarily the internal partitions and the south and east brick facades with sympathetic London stock brick akin with the original and sympathetic new windows. The renovation of the south walls would also require reskinning of the existing fabric.

Original internal features such as the remaining three original internal staircases or the fireplaces will be also restored. Other elements significant to the Georgian buildings such as removed fireplaces, chimney breasts, wall niches or wall detailing (cornices, skirting etc.) will be reinstated with simplicity and honesty, sympathetic to the heritage character of the spaces.

The front façades are the main feature of the Georgian Terrace and the primary reason for its Grade II Listed status. It is proposed to retain and repair the existing sash windows and replace the existing poor quality secondary glazing by bespoke timber secondary glazing following the profile of the sash windows.

There are also proposed works to the existing roofs to rebuild misshapen roofs and disproportionate stacks, reintroduce clay chimney pots and replace asbestos tiles with UK-sources natural slate.

Lastly, the vaults adjoining the terrace are proposed to be repurposed and maximum use made of them.

For more information, please refer to the Listed Building Consent document.

3.1.2 Keats House

With only the front facade having been retained in the 1980s development, the internal spaces are devoid of their original character. The proposal seeks to return Keats House closer to its original condition as a standalone building, giving it breathing space and offering active frontage to new public realm areas on site. This requires the removal of the existing 1980s development attached to the back and side of the existing retained façade, the relocation of the façade further west away from Coneybeare House, and the construction of new sympathetic elevations to the flank elevations.

Of the original Keats House façade, the brickwork will be repaired and replaced where necessary, including the flank walls. The stone portico will be preserved and restored, together with the iron railing fronting St Thomas Street.

3.1.3 Existing piles

New City Court's existing foundations have been considered indirectly in the new building foundation design, as stiffening elements that allow for a greater bearing pressure underneath the piled raft, however their contribution is relatively limited.

3.1.4 Reuse of other areas

As described above, the Georgian Terraces and Keats House's retained façade will be reused as part of the new permanent structure. Other parts of the existing structure will be reused in the temporary condition, including the existing basement walls (where possible) – the resulting rubble from the existing structure's demolition will also be reused to form the temporary pilling mat.

- 3.2 Proposed design considerations
- 3.2.1 Building in layers

The proposed scheme design has been broken down into building layers to design out waste, optimise material use and keeping building elements/materials in use after the end of their life cycle. Please refer to the summary of strategies in Table 3.

The design objective for the elements with longer life cycle (more than 25 years) is to design for longevity, adaptability and flexibility. The structural engineers have done a design analysis for providing soft spots in the structure to provide flexibility of use to the potential tenants and occupiers. A structural zoning has been done to locate the soft spots on each floor plate (included in Appendix 9). Larger grid sizes provide an opportunity for building to be adaptable for alternate uses in the future. Composite construction makes these large grid sizes possible as well as has other benefits too. Concrete provides longevity and high thermal mass whilst steel is highly recyclable.

Building layers with shorter life expectancy (less than 25 years) will be designed for ease of maintenance, reuse and recoverability. The plant will be made accessible for replaceability and maintenance. In terms of building services, a water based wet system is proposed for the communal network thus reducing the use of refrigerant in the building. The strategy allows for multiple tenancies on each floor thus giving flexibility to potential tenants and the need for additional plant. As the site is within a Heat Network Priority Area, a plant room in the basement and sleeves in the basement wall have been provided for future connectivity to a district network. The passive design of the building has informed the overall services strategy. The proposed mixed mode system reduces the ventilation requirement and heat recovery system reduces the heating demand, thus reducing the plant requirement.

This is a shell and core development, future tenants are unknown and therefore speculative finishes such as raised access floors, grid ceilings, etc. will not be provided to avoid any wastage. The material procured for internal finishes, partitions and furniture in the landlord areas will have ingredients disclosed by the manufacturer, a disclosure organisation or a third party such as Declare label or equivalent. Biogenic material will be selected where possible. The partitions and furniture will be designed for disassembly.

All elements from the demolition that cannot be reused on site will be sent to organisations for onward reuse. Opportunities will be explored for reusing hoardings and scaffoldings. The use of Building Information Modelling in the project could be used for estimating material quantities, thus reducing over procurement and waste generation. All the packaging will be returned to the suppliers for reuse. Offsite and modern methods of construction may be considered to further optimise material use and waste minimisation.

Table 3 Strategies for building layers

Layer	Constituent elements	Strategies	
Site	The geographical setting, urban location and external works	Retain and reuse	
Substructure	Excavations, foundations, basements and ground floors	Longevity - durable and resilient; readiness for alternative technologies	
Superstructure	Load-bearing elements above plinth including roof supporting structure	Adaptability – how the current needs might change in the future	
Shell/Skin	The layer keeping out water, wind, heat, cold, direct sunlight and noise	Flexibility - potential for reconfiguration of non-structural parts	
Services	Installations to ensure comfort, practicality, accessibility and safety	Reusability - designed to be redeployed of reused as kit of parts	
Space	The layout internal walls, ceilings, floors, finishes, doors, fitted furniture	Recoverability - designed to be deconstructed and reused/recycled	
Stuff	Anything that could fall if the building was turned upside down	Not applicable due to 'shell and core' nature of the development	
Construction Stuff	Any temporary installations/works/ materials, packaging and equipment	Reusability - Use of re-usable hoardings Waste minimisation, material optimisation	

3.2.2 Design optimisation

The design team has done extensive studies to optimise the material use for the scheme. Passive design studies were undertaken to reduce the operational energy of the building. The double skin façade may add to the embodied carbon, but it offsets the ventilation requirement and provides significant operational savings. The structural engineers have undertaken feasibility studies for structural grid size and type of slabs to reduce the amount of embodied carbon contained within them. The result is post-tension slab with varying grids to suit building shape.

Recycled content has been maximised as reported in section 2.3 and 4.3. Further interventions for the reduction of embodied carbon have been listed for further investigation at the design stages. With some of the interventions, there are supply chain limitations, for example recycled aluminium. These challenges and opportunities will have to be explored further.

As part of concept design, detailed studies were carried out to optimise the structure which minimises the material quantity and the embodied carbon. An extract from the studies is shown in Appendix 8.

3.2.3 Approach to disassembly

Modular elements such as demountable floors, cladding, etc. are proposed where possible. The base build installation includes for raised access floors in the offices which are modular and can be re-used as necessary. The facade is modular, with a framed demountable chassis and modularised final elements. These include the demountable glazing systems as well as demountable glass reinforced cement panels, all materials that can be recycled.

Lime mortar will be specified for the brick refurbishment works for the Georgian buildings and Keats House. This reduces the requirement for movement joints, reduces the carbon included in Portland cement manufacture, but also allows for easier disassembly of brick walls in the future for re-use.

Soft spots have been considered and designed into the typical floors slab design. The materiality of the infills is currently envisaged to be concrete but requires confirmation in the next design stage, which will help to confirm the detailing of the infill support - this is envisaged to be formed by either steel angles or concrete nibs upon which the infill panels will rest.

The proposed concrete structure is inherently limited in terms of disassembly potential, however offsite technologies have been considered during this design stage and will be further explored in the next stages to maximise this potential. Where steel structures are proposed, bolted connections will be favoured in lieu of welded connections.

The MEP plant replacement strategy is to be developed to allow for the easy disassembly and removal of plant.

33 **Operational waste**

The scheme has been designed to comply with the capacity and waste managements requirements set out within the following policy documents:

- Waste Management, The Duty of Care Code of Practice (2018 update)
- The Waste (England and Wales) Regulations 2011 (as amended)
- Environment Protection Act 1990
- National Planning Policy Framework (2019) •
- Department for Environment, Food and Rural Affairs (DEFRA), our waste, our resources: a strategy for England (2018)
- HM Government, A Green Future: our 25-year plan to improve the environment (2018) •
- The London Plan March 2021
- London Environment Strategy (2018)
- Waste Management Strategy 2003 2021, Southwark (2003)

The commercial waste store will be provided at basement level one. This is the location that all residual waste, glass waste and food waste generated within the proposed development will be stored prior to collection. The following daily metric have been applied to inform the waste strategy for the development.

Commercial Use	Waste metric	Waste Composition		
Office	1,100 litres per 10,000 sq.ft. (NIA)	Residual Waste 50%		
Food & Beverage	1,100 litres per 2,500 sq.ft. (NIA)			
Retail	1,100 litres per 5,00 sq.ft. (NIA)	Dry Mixed Recycling (DMR) 50%		

All waste storage areas will be designed in accordance with British Standard BS5906:2005 Waste Management in buildings - Code of practice. In summary, the facilities should include the following:

- A suitable waste point in close proximity to allow washing down;
- All surfaces sealed with a suitable waterproof fi nish (vinyl, tiles etc.);
- All surfaces easy to clean; •
- A suitable floor drain; and
- Suitable lighting and ventilation.

ding use

Each commercial operator will provide temporary internal waste storage within their tenanted area as part of the fit-out phases. The internal collection of waste will be maintained by an on-site Facilities Management (FM) team who will collect the waste in suitable trolleys from each tenanted commercial area as separate waste streams. Using the service lift, the on-site FM team will transfer the individual waste streams to the service yard located at basement level two.

Provision of storage for segregated food waste and glass waste is in addition to the requirements specified by the LBS Community Facilities Manager. The exact capacity required on site will be dictated by the specific business activities of the commercial tenants. Food waste and glass waste will be deposited by the on-site FM team in to 240-litre wheeled bins within the commercial waste store. It is intended that the development will promote composting by informing occupiers of the kitchen waste collection scheme within the building user guide. Information on local recycling centres and sustainable living in general will be provided within the guide provided to the occupiers.

Future tenants will submit a comprehensive waste and recycling management strategy in accordance with the BS5906:2005 Waste Management in Buildings - Code of Practice

6

3.4 GLA Circular Economy Statement Guidance Table 1

Aspect	Phase/ Building/ Area	Steering Approach	Explanation	Target	Supporting analysis/ studies/ surveys/ audits
Circular economy approach for new development	Design and Construction Phase/ Main Office Building	 The following design principles should be adopted for the proposed scheme: Retain, repurpose, reuse, recycle where possible to reduce the material use Following lean design principles such as low energy demand, light weight construction To use material efficiently optimise grid sizes, structural loads etc. Thinking in layers and how each building layer can be designed for material efficiency Designing for longevity and future adaptability and flexibility of use Re-using demolition materials on-site Using materials with high recycled content Resilient design to last the life of the building Prioritising sustainably sourced material e.g. FSC or PEFC certified timber, suppliers who operate a compliant environmental management system Specifying material with compliant Environmental Product Declarations (EPDs) Low embodied carbon construction Design for disassembly and demountability Minimising energy and water use during construction and operation 	The following key stakeholders were engaged from the very outset of the project to consider design interventions in line with the approach: • Architect • Structural engineer • Building Services engineers • Sustainability consultants • Demolition contractors • Project managers • Client The structural engineer carried out extensive studies to maximise the use of existing basement and optimise the new structure. Operational energy studies were done to minimise energy demand and plant requirements	95% diversion from landfill at the end of life and Wate generated during construction to be no more than 7.5 m3/100m2 GIFA or 6.5 tonnes/100m2 GIFA	23/06/20: Attended by AHMM,
Circular economy approach for the existing site	Main Office Building & Georgian Houses	 A Pre-demolition audit has been carried out to identify the percentage of demolition and strip out waste which can be reused or recycled on site or offsite. Georgian Houses will be repurposed and refurbished The contractor will implement a compliant Site Waste Management Plan. Diversion of 90% (by tonnage) of the non-demolition waste and 95% (by tonnage) of the demolition waste from going into the landfill. 	 Retain the existing basement as much as possible Use durable materials with low embodied carbon. Waste streams arising from the strip out and demolition works to be segregated. Waste hierarchy of prevention, reuse, recycle, recover and dispose to be followed Opportunities for using strip out waste for site office to be considered 	95% diversion from landfill at the end of life	AKT-II Net Zero Carbon report
Circular economy approach for municipal waste during operation	Main Office Building & Georgian Houses	 Provision of on-floor bins to each of the tenants. Waste segregation at source to be considered Separate bin store for recyclable waste to be provided Provision of a presentation area on ground floor level Bin removal strategy and access to bin stores to be considered Food bins to be provided to each of the tenants 	 The commercial waste store will be provided at basement level two The aim is to reduce the waste going to landfill or incineration. Therefore, waste segregation strategy is key 	65% diversion from landfill at the end of life by 2030	Operational Waste Management Strategy proposed by TPP

4 Circular economy commitments

Key Commitments: GLA Circular Economy Statement Guidance Table 2

	Site	Substructure	Super structure	Shell/Skin	Services	Space	Stuff	Construction Stuff	Summary	Challenges	Who and When	Plan to prove and quantify
	Section A: Conse	rve Resources										
Minimising the quantities of materials used	Repurposing	Retaining existing foundations for Georgian terraces. Main Building – Use of recycled aggregates for basement. Use of cement alternatives. Wherever possible (depending on the material type) the use of offcuts will be re-used i.e. straight reinforcement bars as shear legs. Structural elements optimization to reduce sizes and required material. The concrete generated through demolition is proposed to be crushed, graded, stockpiled and		aluminium.	assembled off- site.	Limit any finishes installed in the areas to be leased out.	Tenant's responsibility.	Use of demountable and reusable scaffolding. Contractor to operate packaging take back scheme. Avoid stockpiling.				

	Site	Substructure	Super structure	Shell/Skin	Services	Space	Stuff	Construction Stuff	Summary	Challenges	Who and When	Plan to prove and quantify
		new levels. Where materials are crushed, hard core would be compacted to form the piling mat for the new construction.	maintenance regime.									
Minimising the quantities of other resources used (energy, water, land)	The project is located on previously developed land with no impact on virgin land. A whole life carbon assessment is being undertaken.	A whole life carbon assessment is being undertaken taking a holistic view to reducing embodied and operational carbon emissions.	A whole life carbon assessment is being undertaken taking a holistic view to reducing embodied and operational carbon emissions.	Façade optimisation studies have been carried out to reduce energy use. A low heat loss form factor design reduces the exposed façade area.	kWh/m2/yr energy use intensity target	Open plan and large spans inherently provies a flexible and adaptable space to allow tenants to fit out as per their needs.	Tenant's responsibility.	The contractor will be required to set targets and monitor energy and water use during 9ortugal99on (Man 03 credit).				
Specifying and sourcing materials responsibly and sustainably	A sustainable procurement plan will be established. All timber and timber based products will be FSC or PEFC certified. Prioritise products with EPDs, ISO14001, BES6001 or accredited EMS certification.	Specify materials with a higher recycled content, lower embodied carbon and water. Specify locally sourced materials. Consider specifying materials / equipment with minimal maintenance requirements. Use significant percentages of cement- replacement alternative binders, such as GGBS in concrete elements. Use concrete mixes that contain no ordinary 9ortugal	Specify materials with a higher recycled content, lower embodied carbon and water. Specify locally sourced materials. Consider specifying materials / equipment with minimal maintenance requirements. Use significant percentages of cement- replacement alternative binders, such as GGBS in concrete elements. Use concrete mixes that contain no ordinary 9ortugal cement where	Consider the use of low embodied carbon façade cladding. Consider material procurement from manufacturers adopting cleaner manufacturing processes		If any paints and finishes are being specified, then ensure they have low VOC content and formaldehyde levels	Tenant's responsibility.	Using only certified timber for scaffolding, hoardings etc.				

	and quantify
cement where feasible	
feasible.	
Concrete steel Concrete steel Concrete steel rebars to be	
rebars to be 97% recycled.	
97% recycled Seek to	
and sourced maximise the	
from secondary use of 10ortu	
suppliers produced using	
employing EAF EAF production production processes such	
processes. as rolled	
sections where	
Recycled possible.	
aggregates to	
be used in the	
basement construction.	
Section B: Design to eliminate waste	
Designing for By retaining The Georgian All structural Materials will be Building Large spans and Tenant's Sustainable	
reusability/recov Georgian terraces and the elements are specified to services take open floor responsibility. Procurement	
erability/longevit y/adaptability/fl excavation and are being durability and a durable for the sum of the sum	
avibility avial and a datability and a datability and a datability and a datability of disc	
explicition retained thus minimum design change developed. waste is being avoiding a large life of 50 years The design scenarios. The location of	
reduced. volume of waste based on the criteria to Cores consider To be reviewed	
generation from current version ensure the Future resilience multiple with contractor	
demolition and of the protection of provided as the tenancies on during pre-	
construction. Eurocodes. the roof, will development is each floor. construction	
Wherever consider the being designed supply chain	
The existing required material to connect to a Slab soft spots engagement. basement will structural selection district network designed in for engagement.	
be reinforced elements will be thoroughly for in the future. future fexlibility	
where needed designed for its robustness. and adaptability	
so it could be accidental load of tenancy	
reused at the cases such as Waterproofing 10ortuga levels.	
end of the life of vehicle impact, detailing,	
the building. blast etc. profiling, Exposed drainage details, concrete soffits	
All structural Build structural fixings and also reduces	
elements are elements with general wase and	
designed for an inherent geometry will improves	
durability and a 10 ortugal 10 10 such be thoroughly adaptablility for	
minimum designas PT slabs (to Iassessed.future tenantlife of 50 yearssoft-spots -fitouts.	
based on the tenant Lime mortar	
current version flexibility). used in brick	
of the Structural refurbishment	
Eurocodes elements works for	
optimization to Georgian	
The retaining reduce sizes and Terraces and	
wall andrequiredKeats House,foundations arematerialreducing use of	
designed using cement and	
reinforced Wherever allow for future	

	Site	Substructure	Super structure	Shell/Skin	Services	Space	Stuff	Construction Stuff	Summary	Challenges	Who and When	Plan to prove and quantify
		concrete. The material is very durable and able to perform during the life time of the building The only environmental agent that will impact the substructure will be water ingress, Waterproofing system is designed to protect the structure from underground water ingress The foundations and retaining walls are made of reinforced concrete and are not susceptible to any damage due to biological agents	maintenance regime Standardisation of the elements will be a key driver of the design to facilitate the installation on site and minimise waste									
Designing out construction, demolition, excavation and municipal waste arising	A target benchmark for resource efficiency, i.e. m3 of waste per 100m2 or tonnes of waste per 100m2 (7.5 m3/6.5 tonnes of waste per 100 m2 GIA).	produced and followed. Brick/block/con crete/hardcore waste will be processed off site at a recycling facility for eventual use as aggregate products such Type 6F2 for building and groundworks as well as roads	crete/hardcore waste will be processed off site at a recycling facility for eventual use as aggregate products such Type 6F2 for building and	Off-site construction/ modular components to reduce waste on site. Glass can be recycled and reused in other glass products or aggregate.	Off-site construction/ modular components to reduce waste on site.	Reuse existing furniture for site office and welfare areas for the project. Reuse existing fire extinguishers for use for the project (undertaking any testing as required).		A site waste management plan to be prepared and followed on site To be reviewed with contractor during pre- construction supply chain engagement.				

									~			
	Site	Substructure	Super structure	Shell/Skin	Services	Space	Stuff	Construction Stuff	Summary	Challenges	Who and When	Plan to prove and quantify
	Section C: Manag			<u> </u>								
	-											
	Aim to achieve		Brick/block/con		97% of the	97% of the	Tenant's	97% of the				
	95% diversion	crete/hardcore	crete/hardcore	stripout waste	stripout waste	stripout waste	responsibility.	stripout waste				
waste from demolition of the	from landfill.	waste will be	waste will be		will be reused or			will be reused or				
layers will be		processed off	processed off	recycled as per	recycled as per	recycled as per		recycled as per				
managed)			site to be used	the pre	the pre	the pre		the pre				
		for groundworks as well as roads	-	demolition audit prepared by	demolition audit	demolition audit prepared by		demolition audit prepared by				
		and driveways.	and driveways.	strip out	prepared by strip out	strip out		strip out				
		and anveways.	and anveways.	contractors.	contractors.	contractors.		contractors.				
		The concrete	The concrete	contractors.	contractors.	contractors.						
		generated	generated									
		through	through									
		demolition is	demolition is									
			proposed to be									
		crushed, graded,										
			stockpiled and									
		re-used on-site	re-used on-site									
			where possible and safe to do									
		and safe to do										
		so.	so.									
		Materials will be	Materials would									
		used to refill	be used to refill									
		some of the	some of the									
		excavated areas	excavated areas									
		to	to									
		accommodate	accommodate									
			the proposed									
		development's new levels.	development's new levels.									
			Where materials									
		are crushed,	are crushed,									
		hard core would										
			be compacted									
		to form the	to form the									
		piling mat for	piling mat for									
		the new	the new									
		construction.	construction.									
	A site waste	A site waste	N/A	N/A	N/A	N/A	N/A	N/A				
	management	management										
	plan will be	plan will be										
manageay	produced and	produced and										
	followed.	followed.										
	A target	A target	A target	A target	A target	A target	Tenant's	To be reviewed				
waste (how waste arising	benchmark for	benchmark for	benchmark for	benchmark for	benchmark for	benchmark for	responsibility	with the				
£	resource efficiency, i.e.	resource efficiency, i.e.	resource efficiency, i.e.	resource efficiency, i.e.	resource efficiency, i.e.	resource efficiency, i.e.		contractor. Contractor will				
construction of	m3 of waste per	m3 of waste per		m3 of waste per		m3 of waste per		seggregate and				
the layers will be	100m2 or	100m2 or	100m2 or	100m2 or	100m2 or	100m2 or		monitor waste				
reused or recycled)	tonnes of waste	tonnes of waste		tonnes of waste		tonnes of waste		generated				
	per 100m2	per 100m2	per 100m2	per 100m2	per 100m2	per 100m2		during				
	(7.5m3/6.5	(7.5m3/6.5	(7.5m3/6.5	(7.5m3/6.5	(7.5m3/6.5	(7.5m3/6.5		contruction.				
		tonnes of waste		tonnes of waste		tonnes of waste						
	per 100m2 GIA).	per 100m2 GIA).	per 100m2 GIA).	per 100m2 GIA).	per 100m2 GIA).	per 100m2 GIA).						

	Site	Substructure	Super structure	Shell/Skin	Services	Space	Stuff	Construction Stuff	Summary	Challenges	Who and When	Plan to prove and quantify
	Aim to divert 90% from landfill.		Aim to divert 90% from landfill.	Aim to divert 90% from landfill.	Aim to divert 90% from landfill.	Aim to divert 90% from Iandfill.						
Municipal Waste (how waste will be managed)	with designated recycling and presenation area	with designated recycling and		N/A	N/A	N/A	5 5	Contractor will seggregate and monitor waste generated during contruction.				

Numerical targets and commitments 4.1

The proposal applies lean design principles by reusing the existing basement and light weight construction. The recycled content within the building material has been maximised within the remit of practical feasibility and availability through the supply chain. At the detailed design stage, opportunities for further increasing the recycled content will be investigated.

The percentage of proposed recycled content is presented in Section 2.3 of this report and further breakdown by building layers in presented in the 'Bill of material' table below:

Table 5 Bill of materials

Layer	Material quantity (kg)	Material intensity (kg/m²)	Estimated recyclable materials	Source of information
		(GIA)	(kg/m²)	
1 Substructure	39,450,102	711.3	710.4	One Click LCA
2.1 Superstructure: Frame	24,348,200	439.0	439.0	Building Circularity
2.2 Superstructure: Upper Floors	34,981,461	630.7	627.5	assessment
2.3 Superstructure: Roof	2,977,666	53.7	52.5	
2.4 Superstructure: Stairs and Ramps	835,579	15.1	13.8	
2.5 Superstructure: External Walls	3,765,885	67.9	61.7	
2.6 Superstructure: Windows and External doors	28,425	0.5	0.5	
2.7 Superstructure: Internal Walls and Partitions	1,147,833	20.7	19.3	
2.8 Superstructure: Internal doors	125,485	2.3		
3 Finishes	1,369,434	24.7	14.7	
4 Fittings, furnishings & equipment	-	-	-	
5 Services (MEP)	2,242,061	40.4	40.1	
6 Prefabricated buildings and building units	-	-	-	
7 Work to existing building	-	-	-	
8 External works	924,376	16.7	16.7	

Recycling and waste reporting

The following table presents the figures for the different categories of waste production.

Table 6 Summary of waste production by category

Category	Total estimate	Of which	Source of information			
	t/m² (GIA)	% reused or recycled	% reused or recycled	% not reused ((max 5%)		
		onsite	offsite	% to landfill	% to other management (e.g. incineration)	
Excavation waste	30,109 m ³	ТВС	ТВС	ТВС	ТВС	Alinea cost plan
Demolition waste	816 t/m²	Subject to methodology of construction/ demolition	95-99% target	0%	<5%	Pre- demolition audit*
Construction waste	3,605 t	ТВС	ТВС	ТВС	ТВС	BREEAM targeted benchmark

*Detailed breakdown available on pg. 62 of the Pre-demolition audit.

Category	Total estimate	Of which	Source of information			
	t/annum	% reused on or off-site	% recycled or composted on or off-site	% not reused ((max 5%)		
				% to landfill	% to other management (e.g. incineration)	
				Max 35% and <u>I</u> or compostab		
Municipal waste	ТВС	TBC	65% by 2030	TBC	TBC	Deliver, Servicing, and Waste Management Plan
Industrial waste (if applicable)	n/a	n/a	n/a	n/a	n/a	n/a

Implementation strategy 4.2

A Site Waste and Resource Management Plan (SWMP/RMP) will be prepared and implemented by the contractor including procedures and commitments to sort and divert waste from landfill, through either;

- Reusing the material on site (in-situ or for new applications)
- Reusing the material on other sites
- Salvaging or reclaiming the material for reuse •
- Returning material to the supplier via a 'take-back' scheme
- Recovery of the material from site by an approved waste management contractor and recycled or sent for energy recovery.

Waste materials will be sorted into separate key waste groups, such as bricks, concrete, insulation, packaging, timber, electricals, plastics, glass, etc., according to the waste streams generated by the scope of the works either onsite or offsite through a licensed contractor for recovery.

The SWMP should include the target benchmark for resource efficiency i.e. 7.5 m3 of waste per 100m2 or 6.5tonnes of waste per 100 m2. It should also cover the following:

- Procedures and commitments for minimising non-hazardous waste in line with the benchmark
- Procedures for minimising hazardous waste
- Procedures for monitoring, measuring and reporting hazardous and non-hazardous site waste
- Procedures for sorting, reusing and recycling construction waste into defined waste groups (see additional guidance section), either on site or through a licensed external contractor
- The name or job title of the individual responsible for implementing the above

The plan should be in line with guidance provided by DEFRA, Building Research Establishment (BRE) and Waste & Resources Action Programme (WRAP). Where materials cannot be reused or recycled on-site, the contractor will identify opportunities for potential reuse off-site. Material and waste generated through construction will be stored safely and efficiently, prior either for reuse on site or removal. Any materials to be reclaimed / reused will be done so in accordance with the WRAP protocol.

The waste reports and records will be reviewed and audited periodically. They will be discussed with the Sustainability champion on site and the BREEAM assessor from time to time. At least 95% of excavation, demolition and construction waste will be diverted from landfill.

The contractor will take appropriate measures on site to further reduce the environmental impact of the construction. They will adopt the following:

- The contractor will register with the Considerate Constructor's Scheme and aim to attain a high score in all categories
- Energy efficient equipment, services and construction methods will be adopted to reduce energy consumption.
- Water use will be minimised during operation, installation and construction processes
- Energy including fuel and water use will be recorded on site during the construction process
- Measures will be put in place to mitigate the potential for pollution from the site to land, air or water including noise and dust
- The contractor will operate as per the guidelines set by ISO 14001 Environmental Management System (or an equivalent standard) and encourage the same throughout the supply chain
- Strategic planning will be done in advance to minimise transport to and from the site to reduce greenhouse gas emissions
- Carbon footprint of material transportation should be recorded through Key Performance Indicator (KPI) sheet provided by the BREEAM assessor.

For commercial waste generated in the building, the quantities of waste and recyclables will be monitored on a monthly basis by the contracted waste specialist, and the results collated by site management. Should there be any undue increase in the level of waste produced, this will be investigated where necessary to identify any specific cause and implement measures to minimise waste.

Although the developer does not have control over the quantum of recycling undertaken by the end user, the proposed arrangements will encourage the tenants to meet or exceed the municipal waste recycling target of 65% by 2030. This will be reviewed and enforced where possible as part of the waste monitoring.

For further information, please refer to Section 8 of the Delivery, Servicing and Waste Management Plan.

4.3 End of life strategy

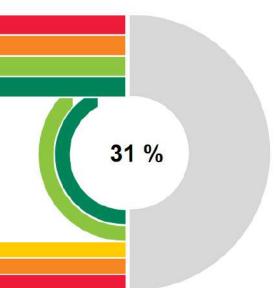
The One Click LCA Building Circularity tool was used to estimate the opportunity for returning the material at the end of life of the building. The results presented here are for the New City Court development based on the inputs used for the whole life carbon analysis of the development. The material quantity and specification inputs are in alignment with the bill of quantities prepared by the cost consultants, Alinea, for the cost plan of the development. Though, it is impossible to predict construction processes and minimum recycling rates in 60 years times but based on current practices and industry benchmarks applied by default by the One Click tool, a reasonable estimation can be done.

This building circularity is being mainly evaluated in terms of the mass of the recovered building material as compared to virgin material likely to be used in the building construction and the percentage of the material that can be returned to building construction at the end of life of the building.

Material Recovered

The calculation takes into account the reused, recycled and renewable materials to ascertain the mass of the recovered material as compared to virgin material. In the case of New City Court building the retained substructure has been taken account which is 10.9% of the total mass of the New City Court building. This was modelled on the basis of estimates provided by the structural engineer and specification of material that may have been used for new structural elements such as piles, raft, basement wall, columns etc.

The recycled content in steel, rebar, aggregates, as reported in Section 2.3, account for 24.1% of the total mass. As Ground Granulated Blast-furnace Slag (GGBS) is a by-product of iron manufacturing, it can neither be categorised as recycled or reused material. Following discussions with One Click LCA, this has been accounted under renewable material. With the proposed strategy the use of virgin material can be reduced to almost half of the building mass.


Material Returned

As mentioned earlier, it is impossible to predict the recycling rates in 60 years' time, however, it has been considered that at least current rates of recycling will be achievable in some cases e.g. steel. The rest of the inputs are based on industry benchmarks applied by the software. Through discussions with the demolition contractor at least 50% of concrete, bricks and masonry by mass are likely to be downcycled that is crushed and used as aggregate at the end of life. Thus, about 56% of the proposed building material can be returned to building construction.

Building Circularity, Greater London Authority 🚱

Material Recovered	7.8 %	
Virgin	92.2 %	
Renewable	0.2 %	4
Recycled	7.1 %	
Reused	0.5 %	

@Material Returned	54.6 %		
Reuse as material	0 %		
Recycling	10.3 %		
Downcycling	88.4 %		
Use as energy	0.2 %		
Disposal	1.1 % 🗲		

5 Whole life carbon assessment

Whole Life Carbon (WLC) assessment has been carried out for the assessment in line with the new London Plan Policy SI2 for the proposed New City Court development. It has been undertaken in line with the widely accepted environmental performance assessment structure illustrated in EN 15978. The quantities and specifications were taken from the cost model prepared by the cost consultants, Alinea, last updated in July 2021.

The assessment includes life cycle stages: A1-A5, B1, B4, B6, B7, C1-C4; and has been done for 60-year life cycle. After a thorough search of existing literature, we are unable to identify any relevant assumptions or estimations for the B2/B3 emissions at this time. We have also enquired through One Click LCA if they are able to provide any high level assumptions on B2/B3 emissions, however they were also unable to provide such resources. Due to the limited data available, stages B2 and B3 were not included in this assessment.

Table 7 Whole Life-Cycle Embodied Carbon Assessment stages

Proc	duct S	tage	Constr Proc Sta	cess		Use Stage				End-of-Life Stage			Benefits and loads beyond the system boundary					
Raw material supply	2 Transport	Manufacturing	Transport to building site	Installation into building	Dse/application	B Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction/demolitio	2 Transport	Waste processing	Disposal	7 Reuse	Recovery	P Recycling
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D	D	D
	х		х	х	х			х	х	х	х		>	<			х	

Description of the life cycle stages and analysis scope are provided in the table below:

Table 8 Description of the life cycle stages

Life cycle stage	Analysis scope
A1-A3 Construction Materials	Raw material supply (A1) includes emissions generated when raw materials are taken from nature, transported to industrial units for processing and processed. Loss of raw material and energy are also taken into account. Transport impacts (A2) include exhaust emissions resulting from the transport of all raw materials from suppliers to the manufacturer's production plant as well as impacts of production of fuels. Production impacts (A3) cover the manufacturing of the production materials and fuels used by machines, as well as handling of waste formed in the production processes at the manufacturer's production plants until end-of-waste state.
A4 Transportation to site	A4 includes exhaust emissions resulting from the transport of building products from manufacturer's production plant to building site as well as the environmental impacts of production of the used fuel.
A5 Construction/ installation process	A5 covers the exhaust emissions resulting from using energy during the site operations, the environmental impacts of production processes of fuel and energy and water as well as handling of waste until the end-of-waste state.
B4 Material replacement	The environmental impacts of material replacements (B4) includes environmental impacts from replacing building products after they reach the end of their service life. The emissions cover impacts from raw material supply, transportation and production of the replacing new material as well as the impacts from manufacturing the replacing material as well as handling of waste until the end-of-waste state.

Life cycle stage	Analysis scope
B6 Energy use	The considered use phase energy co emissions from any building level ener impacts of production processes of fu transmission losses are also taken into a
C1-C4 Deconstruction	The impacts of deconstruction inc construction waste flows for recycling impacts of pre-processing and landfillin (C4) based on type of material. Ac emissions caused by waste energy reco
D External impacts/end-of-life benefits	The external benefits include emission waste. Benefits for re-used or recycled replacing virgin based material with rec can be recovered for energy cover p streams based on average impacts of en

5.1 Results

Since at this stage, individual manufacturers EPDs are not available as yet, the current WLC analysis is based on typical materials database available on One Click LCA to give an indication of the expected performance. The concrete grades, steel grades, recycled content, etc. have been all discussed and agreed with the structural engineer. Please refer to Appendix 6.3 for the list of EPDs used.

Quantities provided from the cost consultant are based on Stage 1+ (Planning design) information. This information is very high level; therefore, the quantities are the same. The quantities provided do not allow for the following:

- 1. Contingency for the natural design evolution that will take place through the proceeding stages.
- 2. Items not currently drawn and therefore not quantifiable, e.g. temporary works, construction methodology driven works, secondary steel, upstands, plinths etc.
- 3. Items not fully coordinated and any discrepancies between documentation.
- 4. Wastage and ancillary item

The WLC study shows that the embodied carbon over the life cycle is $797 \text{ kgCO}_2/\text{m}^2$ which is less than the GLA's Aspirational WLC benchmark of 800 kgCO₂e/m² GIA.

The 'Assessment 1' results are based on SAP 10 carbon factors with Global Warming Potential (GWP) of electricity: 0.233 kg CO₂e/kWh. Assessment 2 illustrates the impact of predicted grid decarbonisation on the carbon emissions. The grid prediction is based on the 'Steady Progression' scenario for 2050. The GWP for this scenario is $0.061 \text{ kg CO}_2 \text{e/kWh}$.

Embodied carbon figures broken down as per RICS categories are presented below. The detailed results can be found in Appendix 6.1 and 6.2.

Table 9 Assessment 1: Embodied carbon results with SAP 10 carbon factors

	Module A1-A5	Module B1-B5	Module B6-B7	Module C1-C4	Module D
Total kg CO2e	30,552,754	9,611,100	82,909,030	768,841	-24,674,543
Total kg CO2e/m ² GIA	551	173	1495	14	-445

Table 10 Assessment 2: Embodied carbon results with grid decarbonisation

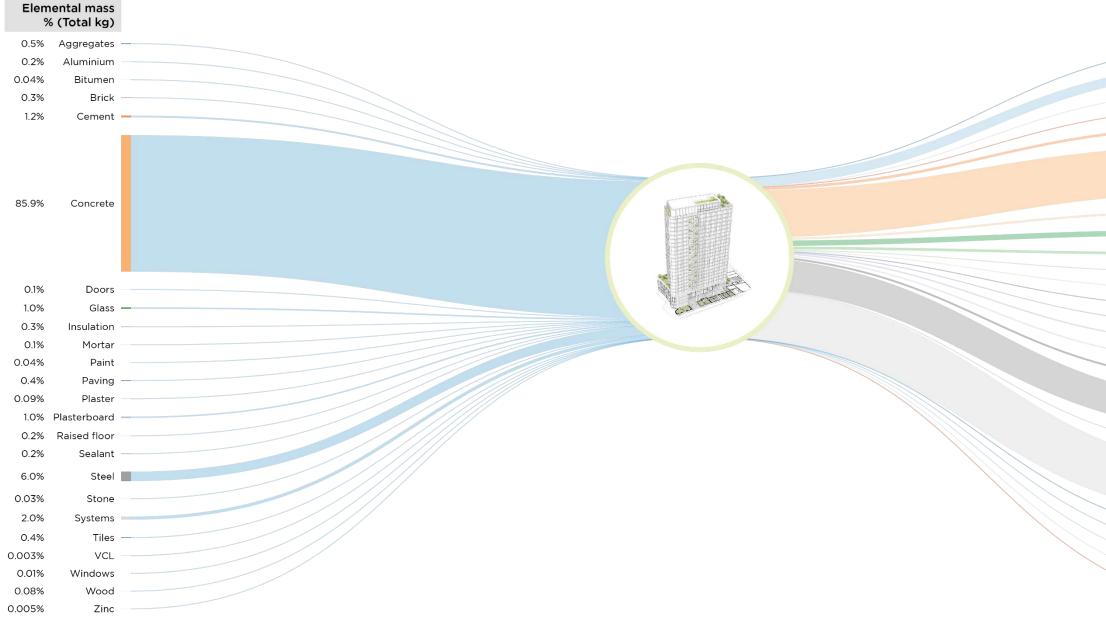
	Module A1-A5	Module B1-B5	Module B6-B7	Module C1-C4	Module D
Total kg CO ₂ e	30,471,827	8,527,455	26,195,240	768,291	-21,814,109
Total kg CO ₂ e/m ² GIA	549	154	472	14	-393

consumption (B6) impacts include exhaust ergy production as well as the environmental uel and externally produced energy. Energy account.

clude impacts for processing recyclable ng (C3) until the end-of-waste stage or the ng for waste streams that cannot be recycled dditionally, deconstruction impacts include overy.

n benefits from recycling recyclable building ed material types include positive impact of cycled material and benefits for materials that positive impact for replacing other energy energy production.

5.2 Actions and opportunities to reduce Embodied carbon


At the outset of the project GLA's WLC template with 16 principles of design was discussed and the strategies were shortlisted. This is presented in the submitted GLA spreadsheet. Following those principles, the key steps that have been taken to reduce the whole life carbon for New City Court include:

- The operational energy has been minimised following the London Plan's Energy Hierarchy such that 49% of the improvement can be achieved over Part L target. More detail can be found in the Energy Statement.
- The existing basement is being retained and reused. ٠
- The GGBS content in concrete has been increased from 25% to 50% for piling, 75% for raft slab. ٠
- PT slabs have been used instead of composite metal deck and steel columns. ٠

Opportunities

To investigate further opportunities for reducing the embodied carbon of the scheme, an investigation of elemental mass vs. embodied carbon was carried out. Please refer to the Sankey diagram for the outcome of the analysis. The elements contributing the most are concrete, steel and aluminium. Therefore, a material interventions matrix has been populated with options to reduce the use of these elements which will be further investigated at the detailed design stage. These options are as below:

- Potential for recycled aluminium. Currently, it is understood that there is shortage of recycled aluminium in the supply chain. The maximum which may be considered is 20%, however, that cannot provide significant reduction in embodied carbon.
- 70% GGBS may be considered to replace cement. However, this can significantly increase the curing time and therefore the construction programme. Therefore, this option needs to be further investigated along with offsite construction.
- Structural load reduction may be considered. It is understood that a reduction of as small as 0.5kPa can • lead to significant cost and carbon savings.

Embodied carbor % (Total kgCO ₂ e)				
Aggregates	0.02%			
Aluminium	6.1%			
Bitumen	0.01%			
Brick	0.1%			
Cement	1.7%			
Concrete	29.9%			
Doors	1.4%			
Glass	3.4%			
Insulation	1.7%			
Mortar	0.08%			
Paint	0.2%			
Paving	0.3%			
Plaster	0.02%			
Plasterboard	0.9%			
Raised floor	1.0%			
Sealant	1.2%			
Steel	19.8%			
Stone	0.03%			
Systems	31.9%			
Tiles	0.01%			
VCL	0.02%			
Windows	0.09%			
Wood	0.07%			
Zinc	0.08%			

6 Appendices

6.1 Appendix 1 - Assessment 1 - WLC SAP 10 scenario

Submitted separately as a standalone spreadsheet.

6.2 Appendix 2 - Assessment 2 - WLC grid decarbonisation scenario

Submitted separately as a standalone spreadsheet.

6.3 Appendix 3 – EPD sources

Resource	Manufacturer	EPD program	EPD number	Environment Data Source	Standard	Verification	Year	Country	Upstream database
name									
Aggregate (crushed gravel), generic, dry bulk density		One Click LCA	-	One Click LCA	EN15804+ A1	Internally verified	2018	LOCAL	ecoinvent
Air handling unit, with heat recovery through plate heat exchanger		One Click LCA	-	One Click LCA	EN15804	Internally verified	2019	LOCAL	ecoinvent
Aluminium framed glazed doors, double glazed, per unit	Optima	Internationa I EPD System	S-P-00480	EPD Aluminium Framed Glazed Doors	EN15804+ A1	Third-party verified (as per ISO 14025)	2017	unitedKin gdom	ecoinvent
Aluminium mullion-transom system		OKOBAUDA T	-	Oekobau.dat 2020-II	EN15804+ A1	Third-party verified (as per ISO 14025)	2020	germany	GaBi
Autoclaved aerated concrete block	Forterra	BRE	BREG EN EPDOOOOO1	EPD Thermalite Autoclaved Aerated Concrete Block (470-770 kg/m3), Forterra Building Products Ltd 2016	EN15804+ A1	Third-party verified (as per ISO 14025)	2016	unitedKin gdom	ecoinvent
Bricks	Wienerberger	IBU	EPDWIE- 20130206- IAB1EN	Bricks Wienerberger AS	EN15804+ A1	Third-party verified (as per ISO 14025)	2014	germany	GaBi
Ceramic floor tile	Mosa	MRPI	11.1.0001.00 4	EPD Vloertegelcollecti e Koninklijke Mosa	EN15804+ A1	Third-party verified (as per ISO 14025)	2013	unitedKin gdom	ecoinvent
Clay plaster		OKOBAUDA T	-	Oekobau.dat 2020-II	EN15804+ A1	Third-party verified (as per ISO 14025)	2020	germany	GaBi
Coated (sub- face) preweathered rolled zinc, sheets and coils	VM	BRE	BREG EN EPDROOO31	EPD COATED (on the sub-face) PREWEATHERED ROLLED ZINC - QUARTZ ZINC PLUS® and ANTHRA ZINC PLUS	EN15804+ A1	Third-party verified (as per ISO 14025)	2018	france	GaBi
Concrete block wall, with high density solid blocks, per m2 of wall including mortar		ICE	-	ICE database August 2019, V3.0	EN15804+ A1	Self declared	2019	unitedKin gdom	-
Concrete block wall, with medium density solid blocks, per m2 of wall including mortar		ICE	-	ICE database August 2019, V3.0	EN15804+ A1	Self declared	2019	unitedKin gdom	-
Concrete sealant, generic		One Click LCA	-	One Click LCA	EN15804+ A1	Internally verified	2018	LOCAL	ecoinvent
Cooling tower	MDEGD	INIES	INIES_DTO U20190919_	MDEGD_FDES	EN15804+ A1	Third-party verified (as	2019	france	ecoinvent

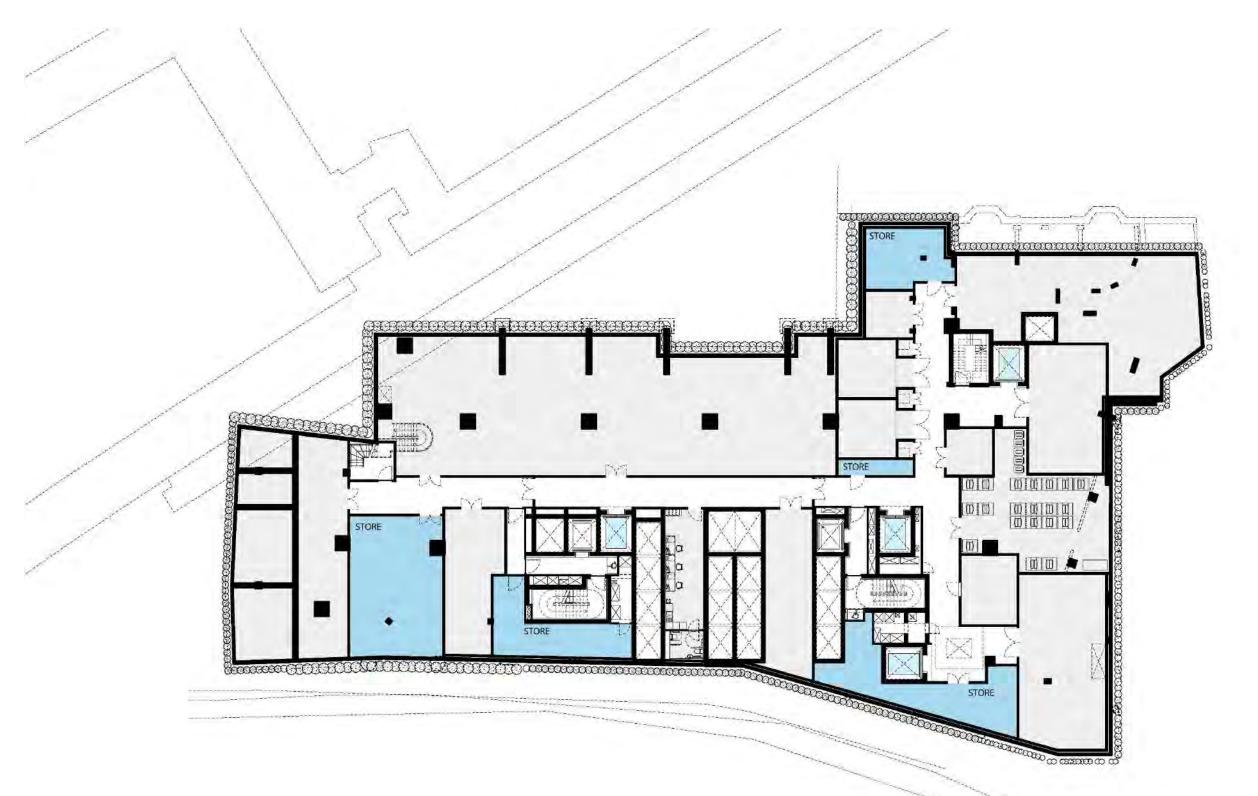
Resource	Manufacturer	EPD program	EPD number	Environment Data Source	Standard	Verification	Year	Country	Upstream database
			144524, 12449			per ISO 14025)			
District heat distribution center		One Click LCA	-	One Click LCA	EN15804	Internally verified	2019	LOCAL	ecoinvent
Double glazing windows with wooden frame	INSTITUT TECHNOLOGI QUE FCBA	INIES	INIES_CFEN 20200421_ 091527, 16412	FDES	EN15804+ A1	Third-party verified (as per ISO 14025)	2020	france	ecoinvent
Dried lumber from spruce or pine wood	Puutuoteteolli suus	RTS	RTS_27_19	RTS EPD YMPÄRISTÖSELO STE, nro. RTS_27_19 Suomalainen kuivattu sahatavara kuusi- tai mäntypuusta	EN15804+ A1	Third-party verified (as per ISO 14025)	2019	finland	ecoinvent
EPS insulation panels for flooring, pavement and slabs	SINIAT	INIES	INIES_IUNI2 0180504_10 1133, 8252	FDES	EN15804+ A1	Third-party verified (as per ISO 14025)	2018	france	ecoinvent
Electricity distribution system, cabling and central, for all building types		One Click LCA	-	One Click LCA	EN15804	Internally verified	2019	LOCAL	ecoinvent
Emulsion matt paint for allround interior use	Dulux Trade	MRPI	1.1.00023.20 17	EPD Dulux Trade Supermatt	EN15804+ A1	Third-party verified (as per ISO 14025)	2017	unitedKin gdom	ecoinvent
Excavation works	Required for IMPACT calculations	One Click LCA	-		EN15804	Internally verified	2013	unitedKin gdom	ecoinvent
Exterior lighting, casings embedded in the ground or walls	MDEGD	INIES	INIES_DLU M20191220_ 142649, 13604	MDEGD_FDES	EN15804+ A1	Third-party verified (as per ISO 14025)	2019	france	ecoinvent
External wood door, 2,1 x 1 m		One Click LCA	-	OneClickLCA	EN15804+ A1	Internally verified	2011	LOCAL	ecoinvent
Fibre cement sheets	Rieder	UL Environmen t	4789090717 .101.1	EPD concrete skin, öko skin and formparts	EN15804+ A1	Third-party verified (as per ISO 14025)	2019	germany	GaBi
Flexible bitumen membrane/shee ts for roof waterproofing, European average	European Waterproofin g Association	Internationa I EPD System	S-P-00414	EPD Flexible Bitumen Sheets For Roof Waterproofing sector EPD	EN15804+ A1	Third-party verified (as per ISO 14025)	2016	europe	GaBi
Floor screed mortar, cement screed	quickmix Gruppe GmbH & Co. KG	IBU	EPD-QMX- 20160208- IBC1-DE	Oekobau.dat 2017-1, EPD Mineralische Werkmörtel: Estrichmörtel Zementestrich quickmix Gruppe GmbH & Co. KG	EN15804+ A1	Third-party verified (as per ISO 14025)	2014	germany	GaBi
Glass wool insulation		One Click LCA	-	One Click LCA	EN15804+ A1	Internally verified	2018	LOCAL	ecoinvent

Resource	Manufacturer	EPD program	EPD number	Environment Data Source	Standard	Verification	Year	Country	Upstream database
name									
panels, unfaced, generic									
Gypsum plaster	Bundesverban d der Gipsindustrie	IBU	EPD-BVG- 20140073- IAG1-DE	Oekobau.dat 2017-I, EPD GIPSPUTZ Bundesverband der Gipsindustrie e.V.	EN15804+ A1	Third-party verified (as per ISO 14025)	2014	germany	GaBi
Gypsum plaster board, regular, generic		One Click LCA	-	One Click LCA	EN15804+ A1	Internally verified	2018	LOCAL	ecoinvent
Heat distribution piping network, per m2 heated area, all building types		One Click LCA	-	One Click LCA	EN15804	Internally verified	2019	LOCAL	ecoinvent
Heat distribution system		One Click LCA		One Click LCA generic construction definitions				LOCAL	Ecoinvent
Insulation, EPS solid foam, for ceilings, floors and perimeter insulation	IVH	IBU	EPD-IVH- 20140139- IBB1-DE	Oekobau.dat 2017-I, EPD EPS- Hartschaum (Styropor ®) für Decken/Böden und als Perimeterdämmun g B/P-035 Industrieverband Hartschaum e.V.	EN15804+ A1	Third-party verified (as per ISO 14025)	2015	germany	GaBi
Interior wooden door, with wooden frame	Fédération de l Industrie Bois Construction	INIES	INIES_CBLO 20190722_11 2115, 11194	FDES	EN15804+ A1	Third-party verified (as per ISO 14025)	2019	france	ecoinvent
Laminated safety glass	Guardian Europe	ift Rosenheim	EPD-GFEV- GB-19.0	EPD Uncoated flat glass, laminated safety glass and coated flat glass Guardian Europe S.à.r.l.	EN15804+ A1	Third-party verified (as per ISO 14025)	2016	germany, luxembou rg, poland, spain, unitedKin gdom	GaBi
Lightweight concrete block, with expanded clay aggregate, generic		One Click LCA	-	One Click LCA	EN15804+ A1	Internally verified	2018	LOCAL	ecoinvent
Manhole, reinforced concrete		One Click LCA		Adjusted data based on the specifications of the Swedish Transport Administration (Trafikverket).				LOCAL	Ecoinvent
Masonry cavity wall with partial fill and aircrete block + plasterboard inner leaf, U- value 0.25		One Click LCA		Part L 2016				unitedKin gdom	Other
Masonry mortar, light	quick-mix	IBU	EPD-QMX- 20150010- IBC1-DE	EPD Mineralische Werkmörtel: Mauermörtel Leichtmauermörte	EN15804+ A1	Third-party verified (as per ISO 14025)	2015	germany	GaBi

Resource	Manufacturer	EPD program	EPD number	Environment Data Source	Standard	Verification	Year	Country	Upstream database
name									
				l quickmix Gruppe GmbH & Co. KG					
Natural stone kerbs, per meter	EURO-ROC	IBU	EPD-EUR- 2013253- CBG1-EN	EPD Tiles and Slabs from natural stone EURO-ROC	EN15804+ A1	Third-party verified (as per ISO 14025)	2014	europe	GaBi
Particleboard, uncoated	Sonae Indústria	IBU	EPD-SON- 20160209- IBA1-EN	EPD	EN15804+ A1	Third-party verified (as per ISO 14025)	2016	germany, portugal, southAfric a, spain, canada	ecoinvent
Photovoltaic Façade panels	MDEGD	INIES	INIES_DPAR 20180829_1 43232, 8583	MDEGD_FDES	EN15804+ A1	Third-party verified (as per ISO 14025)	2018	france	ecoinvent, ELCD
Pipesystem, hot and cold water supply, PEX/Alu/PEX, per m2 GFA		One Click LCA	-	Ruuska et al. 2013. Rakennusmateriaa lien merkitys rakentamisen ympäristövaikutus ten kentässä. VTT.	EN15804	Internally verified	2016	LOCAL	GaBi
Planed timber, conifer	Treindustrien	EPD Norge	NEPD-308- 179-EN	Structural timber of spruce and pine, Norwegian Wood Industry Federation	EN15804+ A1	Third-party verified (as per ISO 14025)	2015	norway	ecoinvent
Plywood, generic		One Click LCA	-	One Click LCA	EN15804+ A1	Internally verified	2018	LOCAL	ecoinvent
Precast concrete paving products	BPCF	IBU	EPD-BPC- 20170094- CCD1-EN	EPD UK Manufactured 1 tonne of Generic Precast Concrete Paving Products (Blocks, Slabs, Channels and Kerbs) Produced by members of Interpave a product group of British Precast	EN15804+ A1	Third-party verified (as per ISO 14025)	2017	unitedKin gdom	GaBi
Precast concrete stairs	thomas betonbauteile	IBU	EPD-THO- 20200205- IBD1-DE	EPD Treppen thomas betonbauteile	EN15804+ A1	Third-party verified (as per ISO 14025)	2020	germany	GaBi
Prestressed steel for concrete reinforcement in strands (PC- strand)	Siderurgica Latina Martin	Kiwa BCS	EPD-SLM- 081-EN	EPD PC Strand	EN15804+ A1	Third-party verified (as per ISO 14025)	2020	italy	ecoinvent
Raised access flooring system	Kingspan	Internationa I EPD System	S-P-00797	EPD Kingspan RG2 Europed	EN15804+ A1	Third-party verified (as per ISO 14025)	2016	unitedKin gdom	ecoinvent
Ready-mix concrete, high- strength, generic		One Click LCA	-	One Click LCA	EN15804+ A1	Internally verified	2018	LOCAL	ecoinvent
Ready-mix concrete, low- strength, generic		One Click LCA	-	One Click LCA	EN15804+ A1	Internally verified	2018	LOCAL	ecoinvent

Resource	Manufacturer	EPD	EPD	Environment Data	Standard	Verification	Year	Country	Upstream
name		program	number	Source					database
Ready-mix concrete, normal strength, generic		One Click LCA	-	One Click LCA	EN15804+ A1, EN15804+ A2	Internally verified	2020	LOCAL	ecoinvent
Ready-mix concrete, normal- strength, generic		One Click LCA	-	One Click LCA	EN15804+ A1	Internally verified	2018	LOCAL	ecoinvent
Ready-mix concrete, normal- strength, generic		One Click LCA	-	One Click LCA	EN15804+ A1	Internally verified	2018	LOCAL	ecoinvent
Red brick, average production, UK	The Brick Development Association	BRE	BREG EN EPD00000 2	EPD BDA generic brick, The Brick Development Association 2015	EN15804+ A1	Third-party verified (as per ISO 14025)	2015	unitedKin gdom	ecoinvent
Reinforcement steel (rebar)	BRC	-	-	Environmental product declaration (EPD) report of fabricated steel products produced in the UK by Eco- Reinforcement members	EN15804+ A1	Third-party verified (as per ISO 14025)	2019	unitedKin gdom	ecoinvent
Reinforcement steel (rebar), generic		One Click LCA	-	One Click LCA	EN15804+ A1	Internally verified	2018	LOCAL	ecoinvent
Revolving door, per unit	ASSA ABLOY	IBU	EPD-ASAB- 20151118- IBA1-EN	EPD ASSA ABLOY RD300-4, Revolving door	EN15804+ A1	Third-party verified (as per ISO 14025)	2015	czechRep ublic	GaBi
Rock wool insulation panels, unfaced, generic		One Click LCA	-	One Click LCA	EN15804+ A1	Internally verified	2018	LOCAL	ecoinvent
Rock wool/mineral wool insulation	Knauf	BRE	BREG EN EPD000097	EPD Rock Mineral Wool Insulation 106 -160 kg/cu.m, Knauf Insulation 2016	EN15804+ A1	Third-party verified (as per ISO 14025)	2016	unitedKin gdom	ecoinvent
Roof slate		OKOBAUDA T	-	Oekobau.dat 2020-II	EN15804+ A1	Third-party verified (as per ISO 14025)	2020	germany	GaBi
Rubber underlayment, for acoustic insulation under screed layer	Scan Underlay	EPD Danmark	MD-19007- DA	MD-19007-DA Scan Underlay Production ApS	EN15804+ A1	Third-party verified (as per ISO 14025)	2019	denmark	GaBi
Self levelling mortar, for floors, walls and overhead appl.	PCI Augsburg	IBU	EPD-PCI- 20160262- IBE1-DE	Oekobau.dat 2017-1, EPD Ausgleichsmörtel PCI Pericret für Boden, Wand und Decke PCI Augsburg GmbH	EN15804+ A1	Third-party verified (as per ISO 14025)	2016	germany	GaBi
Sewage water drainage piping network, per m2 GIFA		One Click LCA	-	One Click LCA	EN15804	Internally verified	2019	LOCAL	ecoinvent

Resource	Manufacturer	EPD program	EPD number	Environment Data Source	Standard	Verification	Year	Country	Upstream database
name									
(residential buildings)									
Soil, compacted dry density		One Click LCA	-	LCA for site construction products, OneClickLCA 2012	EN15804	Internally verified	2020	LOCAL	ecoinvent
Solar panel photovoltaic system, EU average		One Click LCA	-	One Click LCA	ISO14040	Internally verified	2015	LOCAL	ecoinvent
Stainless steel bicycle rack	MINISTERE DE L'ENVIRONNE MENT, DE L'ENERGIE ET DE LA MER - MINISTERE DU LOGEMENT ET DE L'HABITAT DURABLE	INIES	INIES_DRAT 20200616_1 35407, 18619	MDEGD_FDES	EN15804+ A1	Third-party verified (as per ISO 14025)	2020	france	ecoinvent
Stainless steel handrail	MDEGD	INIES	INIES_DMAI 20180529_1 40740, 8288	MDEGD_FDES	EN15804+ A1	Third-party verified (as per ISO 14025)	2018	france	ecoinvent
Stainless steel wall covering sheets	Construction Specialties (CS)	NSF	EPD10475	EPD Stainless Steel Wall Covering Sheets	ISO14040	Third-party verified (as per ISO 14025)	2020	pennsylva nia, USA	GaBi
Steel sheets, generic		One Click LCA	-	One Click LCA	EN15804+ A1	Internally verified	2018	LOCAL	ecoinvent
Steel stud internal wall assembly, 100 mm, incl. mineral wool insulation		One Click LCA		One Click LCA generic construction definitions				europe	Other
Structural steel profiles, generic		One Click LCA	-	One Click LCA	EN15804+ A1	Internally verified	2018	LOCAL	ecoinvent
Structural steel profiles, generic		One Click LCA	-	One Click LCA	EN15804+ A1	Internally verified	2018	LOCAL	ecoinvent
Surveillance camera, French average	MDEGD	INIES	INIES_DEQ U20161116_1 64440, 5662	MDEGD_FDES	EN15804+ A1		2016	france	ecoinvent, ELCD
Top hung casement wooden window	Mumford & Wood	BRE	BREG EN EPD 000160	EDP Conservation casement windows	EN15804+ A1	Third-party verified (as per ISO 14025)	2017	unitedKin gdom	ecoinvent
Ventilation ducting		One Click LCA	-	One Click LCA	EN15804	Internally verified	2019	LOCAL	ecoinvent
Ventilation system for office and care buildings		One Click LCA		One Click LCA generic construction definitions				LOCAL	Ecoinvent
Wastewater drainage system		One Click LCA		One Click LCA generic construction definitions				LOCAL	Ecoinvent


Resource name	Manufacturer	EPD program	EPD number	Environment Data Source	Standard	Verification	Year	Country	Upstream database
Water chiller, HVAC, French average	MDEGD	INIES	INIES_DGR O20161116_1 64444, 5665	MDEGD_FDES	EN15804+ A1		2016	france	ecoinvent, ELCD
Water circulation radiator		One Click LCA	-	One Click LCA	EN15804	Internally verified	2019	LOCAL	ecoinvent
Water-borne interior paints	Teknos	RTS	RTS_14_18	EPD RTS EPD, Water-borne interior paints	EN15804+ A1	Third-party verified (as per ISO 14025)	2018	finland, OCLEPD	ecoinvent
Weathering pre- finished steel profile	SAB-profiel, Tata Steel Europe	TATA Steel	EPD-TS- 2020-009	EPD SAB 35/1035 wall profile	EN15804+ A1	Third-party verified (as per ISO 14025)	2020	netherlan ds, unitedKin gdom	GaBi
Window system, with aluminum composite profile framing, single glazed	Schüco	IBU	EPD 2082- 6-201903- 201904020 75452-EN	EPD Schüco AWS/ADS 50.NI W x H: 6700 mm x 2380 mm for project: 12500 Herbarium - Item: V1-Vinmonopolet Schüco International KG Created by: AS Rubicon	EN15804+ A1	Third-party verified (as per ISO 14025)	2019	germany	GaBi
Wooden joist floor assembly		One Click LCA		One Click LCA generic construction definitions				europe	Other
Wooden stud internal wall assembly, 100 mm, incl. mineral wool insulation		One Click LCA		One Click LCA generic construction definitions				europe	Other

6.5 Appendix 5 – Pre-demolition audit

New City Court

Pre-demolition Audit

July 2021

Date	Description	Amended by	Issued to
26/04/21	Pre-demolition Audit T00 Draft for comment	LT	Nicola Gautrey
08/07/21	Pre-demolition Audit T01	LT	Nicola Gautrey
16/07/21	Pre-demolition Audit T02	LT	Nicola Gautrey
	26/04/21 08/07/21	26/04/21 Pre-demolition Audit T00 Draft for comment 08/07/21 Pre-demolition Audit T01	26/04/21 Pre-demolition Audit T00 Draft for comment LT 08/07/21 Pre-demolition Audit T01 LT

Contents

1	Executive Summary
2	Location Map
3	Scope
4	Limitations of the Audit
5	Identification of Key Materials
5.1	Elemental Building Components
5.2	Existing Structure
5.3	Internal Fabric
5.4	External Fabric
5.5	Construction waste Groups
6	Key Objectives
6.1	Potential Applications
6.2	Related issues for re-use and recycling of key materials
6.3	Opportunities for Reuse and Recycling within the Development
6.4	Local Re-processors or Recyclers
6.5	Overall Recycling Targets
6.6	Overall Landfill Diversion Rate

7	Quantification of Key Materials
7.1	Building Measurements
7.2	Table of materials
7.3	Overall Project Reuse and Recycling Targets

Appendices

Appendix 1:	Drawing Annot
Appendix 2:	Bluebeam Drav
Appendix 3:	Excel Spreadsh
Appendix 4:	GLA Circular Ec
Reporting	

19
19
20
22

tations

wing Breakdown

eets

conomy Recycling & Waste

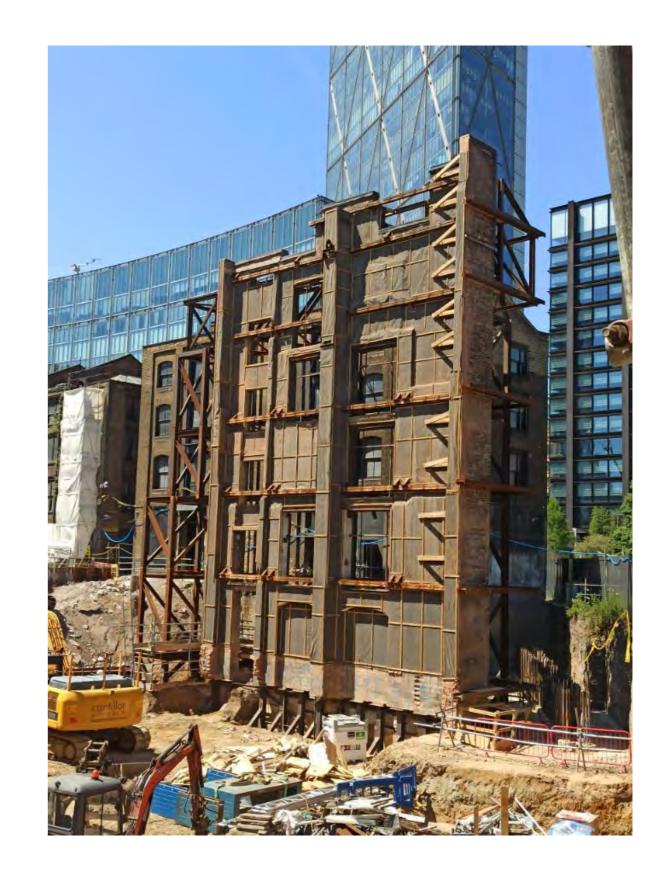
Pre-demolition audit – July 2021

Glossary of Terms

	RMP	Resource Man
CEMP	Construction Environmental Management Plan D&CMP	Demolition an
D&CMP	Demolition and Construction Management Plan FM	Facilities Mana
FM	Facilities Management LBoS	London Borou
HE	Historic England	
LUL	London Underground LTD	
CoL	City of London	
MOLA	Museum of London Archaeology	
NG	National Grid PLC	
NwR	Network Rail	
PCSA	Pre-Construction Services Agreement	
PD	Principal Designer under CDM 2015 regulations	
PMS	Project Milestone schedule	
RFP	Request for Proposal	
TFL	Transport for London	
UKPN	UK Power Networks	
WSI	Written Scheme of Investigation	

e Management Plan

nd Construction Management Plan

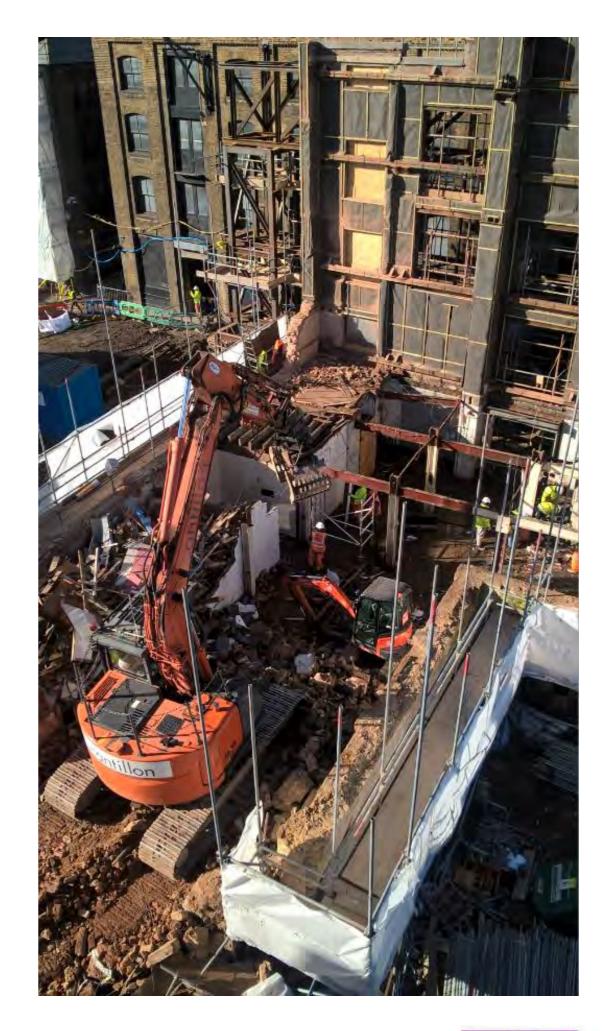

nagement

ugh of Southwark

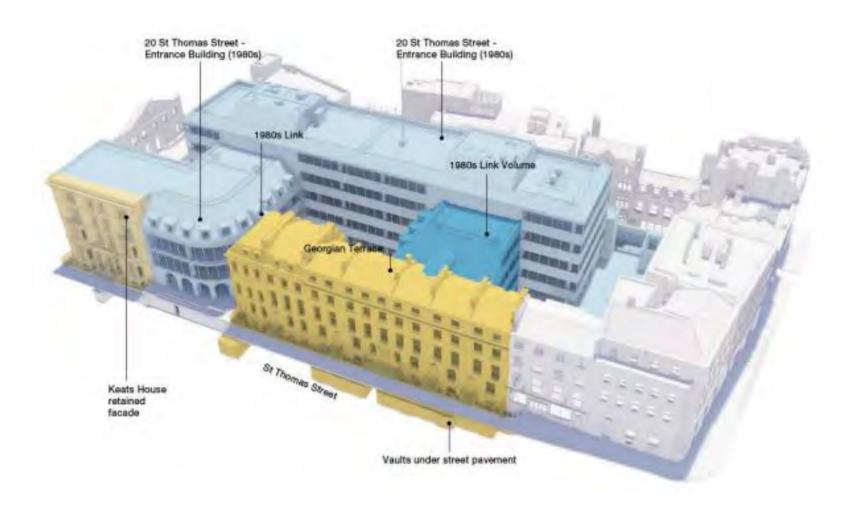
1 Executive Summary

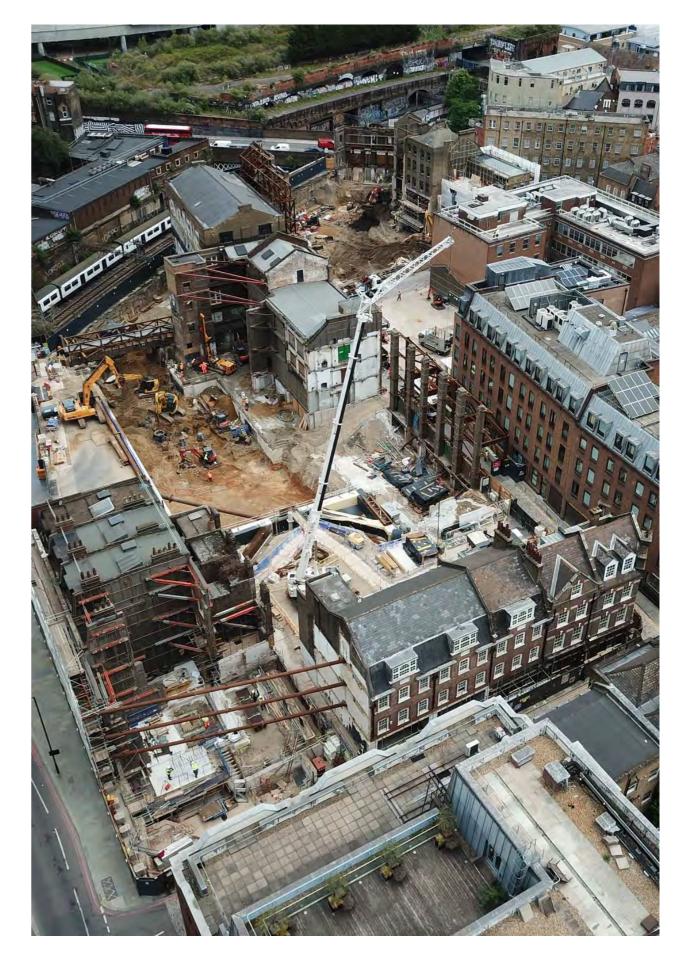
- 1.1. Cantillon Limited have been invited by Gardiner & Theobald LLP on behalf of GPE to offer a proposal to undertake a pre demolition audit to inform the Clients circular economy and to meet BREEAM requirements.
- 1.2. The purpose of the audit is to identify and quantify where possible the key materials present within the existing buildings, and to further identify the potential recycling or reuse strategy to assist the Client decision making process in respect to the proposed development.
- 1.3. This document provides our response to provide a consultancy service to undertake a Predemolition Audit for a potential redevelopment on St Thomas Street composing of buildings on the site known as New City Court.
- 1.4. The audit has been carried out at the Concept Design Stage prior to strip-out or demolition works in order to use the audit results to guide the design, consideration of materials that can be reused, and to set targets for waste management and ensure all Contractors are engaged in the process of maximising high-grade reuse and recycling opportunities.
- 1.5. This report sets out the findings of the pre-demolition audit and recommendations for opportunities, contained within.
- 1.6. This audit has been carried out by a competent person who has appropriate knowledge of buildings, waste and options for the reuse and recycling of different waste streams.

2 Location Map


New City Court – Site Location

3 Scope


- 3.1 Complete a pre-demolition audit of any existing buildings, structures or hard surfaces being considered for demolition. This must be used to determine whether refurbishment or reuse is feasible and, in the case of demolition, to maximise the recovery of material for subsequent high grade or value applications. The audit must cover the content of Pre-demolition audit scope and:
 - i) Be carried out at Concept Design stage (RIBA Stage 2) by a competent person (see Definitions) prior to strip-out or demolition works
 - ii) Guide the design, consider materials for reuse and set targets for waste management
 - iii) Engage all contractors in the process of maximising high-grade reuse and recycling opportunities
- 3.1. Make reference to the audit in the resource management plan (RMP) (see Definitions).
- 3.2. Compare actual waste arisings and waste management routes used with those forecasts and investigate significant deviations from planned targets.
- 3.3. The audit must cover the following content
 - i) Identification and quantification of the key materials where present on the project
 - iv) Potential applications and any related issues for the re-use and recycling of the key materials in accordance with the waste hierarchy
 - v) Opportunities for reuse and recycling within the same development
 - vi) Identification of local re-processors or recyclers for recycling materials
 - vii) Identification of overall recycling rate for all key materials
 - viii) Identification of reuse targets where appropriate
 - ix) Identification of overall landfill diversion rate for all key materials



4 Limitations of the Audit

- 4.1. Cantillon subsequently arranged site visits during the week commencing 22nd March and site was accessed on the 26th March. Cantillon were able to achieve access within the occupied buildings to undertake a visual, non-destructive survey.
- 4.2. It should be noted, that due to the limitations of the inspection, it was not possible to access all areas or to inspect live and operational plant and equipment
- 4.3. During the site visit Cantillon were able to access the majority of the New City Court building and the joining Georgian Terrace.
- 4.4. On the 6th April Cantillon returned for a second site visit.
- 4.5. Assumptions have been made in respect to the structure, without further construction data.
- 4.6. All estimates are based on drawings sent from Allford Hall Monaghan Morris Architects Ltd Cantillons site visit and previous specialist demolition and engineering experience.

Identification of Key Materials 5

Elemental Building Components 5.1

- 5.1.1. To undertake a pre-demolition audit of the existing site buildings to determine the primary materials that would be site won from the demolition and or refurbishment process.
- 5.1.2. The audit must take account of any existing buildings, structures or hard surfaces being considered for demolition.
- 5.1.3. The identification of materials should be used to determine whether refurbishment or re-use is feasible and in the case of demolition, to maximise the recovery of materials for subsequent high grade or value applications.
- 5.1.4. The following report section, identifies general building components used within the construction of the existing buildings and their likely make up.

5.2 **Existing Structure**

- 5.2.1. From the site inspection, some key elements have been established in terms of the method and type of construction, but without further investigation, assumptions have been made as to typical construction depths and thickness measurements where possible.
- 5.2.2. The key components are as follows:

Basement Slab and Foundations

- 5.2.3. Existing retaining walls are generally exposed and appear to be RC in form.
- 5.2.4. From inspection, the basement slab is an RC construction, we would assume to be c.250mm thick. Further evidence would be required to be produced to assess these in a pre-demolition audit.
- 5.2.5. The concrete materials could conceivably be recovered during the demolition process and possibly be reintegrated within permanent construction as a primary aggregate replacement.

Block work construction

5.2.6. Within the basement levels of New City Court generally, the predominant building materials to form plant space partitions are thermalite concrete blocks, measuring 140mm thick, constructed full height within the frame. This is unlikely to present circular economy reuse potential, but good recycling opportunities.

Fig. 1 Evidence of dense block wall construction within basement plant areas in New City Court

5.3 **Internal Fabric**

Raised Access Flooring

- 5.3.1. There is a significant amount of raised access flooring in widespread use on the project. From our site visit Cantillon identified two styles of Raised Access Flooring. The first type identified on the majority of floors of New City Court and the Georgian Terraces was a newer silver style. A further invasive survey would be needed to lift the floor up and identify the make and brand of the flooring.
- 5.3.2. The second style was and older raised access flooring with four screws in each panel. This is an older style and does not have circular economy opportunities. These were largely found on Level 02 in the New City Court building.

5.3.3. There are companies who specialise in the re-use of raised access flooring, subject to being in good condition and being of the right age and quality. This can be attained through early site access to lift panels to assess the form and make up.

Fig. 2 Example of two types of Raised Access Flooring found in the building. (Left – Level 02 New City Court. Right – Georgian Terrace)

- 5.3.4. Old tiles with a plaster type or cementitious fill with a dimpled soffit are generally not able to be re-used and would almost certainly be sent for recycling.
- 5.3.5. Cantillon would require a further intrusive site visit to understand and confirm the types of raised access flooring that is throughout the building. This will enable us to confirm the amount that can be reused or recycled.
- 5.3.6. Many buildings have different styles of raised access flooring so full access of all areas would be required in order to give an accurate estimation of the reuse/recycle possibilities. Flooring when taken up for re-use present a logistical challenge when recovering large quantities, as there are a limited number that can be stacked on a pallet, meaning that a significant number of pallets need to be used and transported down in the existing lifts.

Carpet Tile Flooring

5.3.7. There is a high volume of carpet tiles in the two buildings ranging from poor to high quality. The basement and stair carpet coverage are of generally poor quality and would need to be recycled, rather than re-used. However, from the ground to the fourth floor the carpet is generally very good quality and would not look out of place in a new building.

Fig. 3 Example of good carpet tiles, that will have reuse opportunities. (Left –New City Court. Right – Georgian Terrace)

- Carpet Tiles that are worn or stained are unable to be re-used, so would have to be recycled. 5.3.8. The carpet tiles on the lower ground floor of the Georgian Terraces were notably worn, therefore limiting the reuse of these in an existing or future development.
- 5.3.9. Carpet tiles if recovered for re-use need to be carefully protected from dirt and water and palletised, so ideally these are removed at an early stage prior to heavy works commencing.

Suspended Ceilings

- Generally, on the floors of both buildings, the site visit has shown there to be large use of 5.3.10. suspended ceilings on all office areas, forming the ceiling void, where services will be located above. Predominantly these are perforated and pressed steel in appearance.
- 5.3.11. Suspended ceiling tiles can have a life cycle of around 10 years. They can soon become warp, brittle and even break. There are a range of different companies that offer a quick and no hassle recycle service.

- 5.3.12. Taking them down, storing and removal from site, presents further risk of damage and therefore generally impractical to reuse in its original form.
- 5.3.13. To date there have been limited opportunities to reuse large areas of suspended ceilings, but certainly on smaller scale it may be possible to reuse some, but the majority would be separated into the relevant waste stream and recovered as a recycled material.

Fig. 4 Light steel suspended tiles on the fourth floor in New City Court.

5.3.14. However, on the second floor a large area of the Runway East office has removed the suspending ceiling tiles and the services are bare to see.

Fig. 5 Bare ceiling on level two, Runway East (New City Court).

Non-loadbearing Lightweight Partitions

- 5.3.15. Within New City Court the majority of the non-load bearing lightweight partitions are on the office areas between ground and fifth floor. There is a small amount in the basement and none on the roof. These would generally be recycled as once removed are not always suitable for reuse.
- 5.3.16. We assume the non-loadbearing lightweight partitions to be 12.5mm thick, decorated plasterboard lining either side of a timber stud, with 100mm insulation.
- 5.3.17. Gypsum products will certainly be separated and sent back into a re-processing stream, where the gypsum will be used to form new plasterboard products. The paper will also be reprocessed to use as a new product.
- 5.3.18. Take back schemes such as those offered by British Gypsum only recover off cuts and unused boards from new boards and not materials recovered that have been decorated, i.e. existing partitions.

Furniture and Equipment

- 5.3.19. No confirmation at this time has been given on which furniture is to be removed by tenants in both properties at the end of their lease. Cantillon can give an overview on the opportunities to reuse and recycle the furniture, fitouts and equipment once this is confirmed.
- 5.3.20. Both buildings are furnished to a high level, with the majority of the furniture and equipment looking as new. Particular the kitchen/communal areas, in the New City Court building. These could be re-used on current/future developments.
- 5.3.21. Office desks and chairs etc. can also be reused in this or other projects and there are specific companies who specialise in assessing these and will take and reuse where the furniture is of good quality, but not all furniture is acceptable. Where not, then these can be sent for recycling.
- 5.3.22. There are plenty of decorative furniture throughout the buildings that would of interest for reuse in other buildings. These include; dart boards, massage chairs, swing chairs and sofas.

Applied Hard Surfaces (eg: Tiling)

5.3.23. Generally, the front of house entrance flooring in New City Court has been tiled using good quality ceramic tiles, but it is not considered viable to reuse these materials given the challenge of removal.

5.3.24. High quality natural stone such as limestone, could conceivably be recovered and in some cases be reconstituted into terrazzo materials, but from the visit, these were not particularly evident / large areas.

Fig. 6 Ceramic Tiles in the toilet areas and ground floor reception of New City Court.

5.3.25. The tiles in the bathroom and shower areas are ceramic and in good condition, along with the amenities such as the toilets, sinks and showers. Similarly, these would be recovered as a recyclable material only.

Vinyl Flooring

- 5.3.26. The majority of the communal office hallway floor areas are finished with a 2mm thick vinyl floor layer.
- 5.3.27. The floor areas of the accessed bathroom areas of the Georgian terraces were vinyl floored.
- Vinyl floor can be reused but careful removal has to be taken to ensure no damage to the 5.3.28. floor.

Fig. 7 Vinyl flooring on the majority of the building's hallway areas. (Right – New City Court. Left – Georgian Terrace)

5.3.29. When recycled, the granules offer the same properties and deliver the same performance as virgin raw materials, conserving natural resources and creating a lower impact on the environment, compared to using virgin raw materials.

Glazed Partitions

- 5.3.30. There is a significant amount of partitioning using glazing throughout both buildings. The clear float glass office partitions are a nice feature but again subject to inspection on whether these have been laminated, there is the opportunity to reuse on this or other projects.
- 5.3.31. Recovery of large glazed panels can be challenging due to the weight for handling and relative access constraints using lifts, which are limited. If these are to be reused, inspections should take place early and the Client press on ahead of the demolition process to achieve the time frame necessary to maximise reuse.

Fig. 8 Internal glazed partitions (Right – New City Court. Left – Georgian Terrace)

5.4 **External Fabric**

Brickwork Fascia to Curtain Walls

- 5.4.1. The majority of the building's façade is made up of the aluminium cladding. The Aluminium cladding panel appear to be sandwich panel and have an applied coated finish of approx. 2/3mm, further investigation will need be needed to clarify their makeup.
- 5.4.2. There is also brickwork on the façade in between aluminium cladding.
- 5.4.3. It is unlikely that the modern nature of the wall construction, would allow the bricks to be reused, given the impracticality of recovery versus the recycling option.

Fig: 9 Evidence of brickwork, cladding and glazing on the New City Court property

Glazing to Curtain Walls

- 5.4.4. There are various difference shapes and sizes of glazing and windows around the buildings. Including a large elevation on the entrance of New City Court on St Thomas Street.
- 5.4.5. The majority of the glazing around the buildings are double glazed glass. While it is likely that it can be removed, it is unlikely that these would be suitable for re-use in other buildings unless specifically designed to accept them.
- 5.4.6. Cantillon have been in discussions with various different glass reuse, recycling and refurbishment companies and are looking into ways to maximise the potential reuse of glass.

Fig: 10 Further evidence of brickwork and glazing at the front façade of New City Court and the Georgian Terraces.

Roof Finishes

- 5.4.7. The roof area of New City Court is consisted of pre-cast paving slabs and natural river terrace decorative gravels. Beneath these, are a layer of c.50mm thick rigid insulation, assumed to overlay a bituminous waterproof membrane. This will not be re-useable and the insulation will have to be recovered as a recycled product subject to testing.
- 5.4.8. Although not damaged, these would be better recycled rather than re-used as they are worn and would likely not suit a modern development.
- 5.4.9. No Access was possible to the roof area or the Georgian Terraces.

Electrical and Mechanical Fittings

5.4.10. Generally, we have not been able to assess the quantities of wired or plumbed mechanical and electrical, without further visual inspections of the typical layouts currently obscured by the internal finishes.

- 5.4.11. In respect to wiring and plumbing, it is unlikely that these elements will be able to be re-used in their original form owing to the stringent requirements of Building Regulations and building control.
- Mechanical and electrical fixtures and fittings within the building, including light fittings, 5.4.12. sockets may be considered by the Client on future development, subject to assessment of each by a qualified professional, which we would be unable to offer at this stage.
- 5.4.13. Boilers and other switch gear and plant are again unlikely to be re-used, but this would be best reviewed by specialists.

Hazardous Material

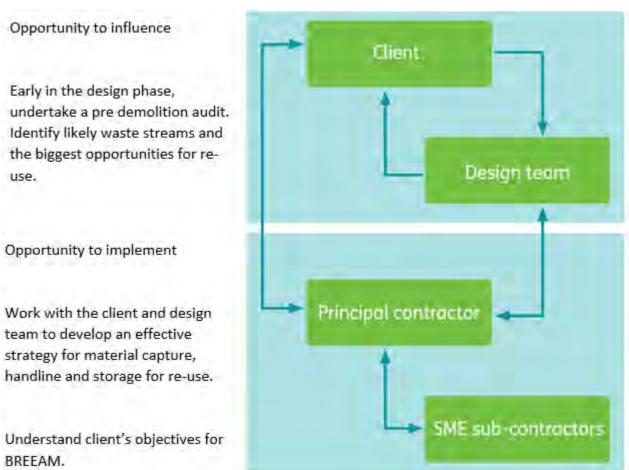
- 5.4.14. It is not possible to assess the quantity of hazardous materials without undertaking a deleterious materials survey, including a HSG264 compliant asbestos survey.
- It is noted in the Allford Hall Monaghan Morris drawings that's the Asbestos roof slates will 5.4.15. be replaced by natural slates.

5.5 Construction waste Groups

Cor	Key Group Examples		European Waste Catalogue Key Group	
Fa	Bricks	Bricks	17 01 02	
Slabs	Slabs, foundations, kerbs hard standings,	Concrete	17 01 01	
Wall	Glass fibre, mineral wool insulation	Insulation	17 06 04	
	Paint pots, cardboard, cable drums, polythene sheets etc	Packaging	15 01	
	Soft wood, hardwood, board products such as plywood, chipboard	Timber	17 02 01	
TVs, white goods	Electrical and electronic TVs, monitors, fridges, air conditioning units, lamps equipment	Electrical and electronic equipment	16 02	
	Hydraulic oil, engine oil, lubricating oil	Oils	13 01	
Root	Bitumen, tar, roof or waterproofing materials	Asphalt and tar	17 03	
Ground F	Ceramic tiles, sanitary ware	Tiles and ceramics	17 01 03	
	Mixed rubble or excavation materials, glass	Inert	17 01	
ł	Rebar, structural steel, sheet metals	Metals	17 04	
Office	Plasterboard, plaster, fibre cement sheets	Gypsum	17 08 02	
	Render, cement mortar	Binders	17 01 01	
	Pipes, cladding, frames	Plastics	17 02 03	
	Soils, clays sand, gravel natural stone	Soils	17 05	
	Non-hazardous paints, thinners and timber treatments	Liquids	Most Rel EWC	
		Hazardous	Most Rel EWC	
Internal v	Carpets, vinyl flooring	Floor coverings [soft]	04 02 22	
	Reclaimed elements, features	Architectural features	Most Rel EWC	
		Mixed or other	Most Rel EWC	

omments
Facades
os, columns
ll insulation
s, air conditioning units
of material
Floor entrances
Rebar
ce partitions
walkway areas

Key Objectives 6


Potential Applications 6.1

- 6.1.1. The aim of this audit is to examine the materials that are within the buildings, the constituent parts that make up the structure, it details the amounts and ideally if they can be re-used, repurposed or recycled. This audit will be used as a reference when planning and executing work and assists the Project Management Team to collate the likely distribution of materials within the upper tiers of the Waste Hierarchy, as defined in the current waste regulations.
- 6.1.2. To represent and promote reuse, repurposing and recycling for the benefit of the wider environment. To promote the individual, collective and principal voice for the demolition industry, whilst developing best practice by promoting legal and regulatory compliance and improving operational standards.
- 6.1.3. To provide a source of information for the demolition industry on matters relating to the waste and recycling industry, including Industry benchmarking, technical development, training and education.
- 6.1.4. To promote and communicate the best interests of the industry and for our clients, and promoting our aims and objectives to general public.

Related issues for re-use and recycling of key materials 6.2

- 6.2.1. To maximise the circular economy opportunities, time and access is key to attaining a higher percentage. This is because, to re-use materials, they have to be carefully separated / protected and removed in more constrained methods, such as palletising and removing large quantities in a labor-intensive manner
- 6.2.2. It is often guite complicated and complex to design in reuse elements. If the architects/engineers and contractors are not buying into the concept and want to approach the project using the standard solutions.
- 6.2.3. Sampling and testing are not always possible meaning organisations are unwilling to take on the liability for passing elements on for reuse.
- 6.2.4. A big issue for re-use of key material is the lack of space for storage. When demolishing/refurbishing a building there is often little space to keep large elements whilst keeping the site safe and tidy.

- 6.2.5. When wanting to re-use certain elements of the building, the material may be fragile and require specific skill sets to deconstruct. This can lead to a longer project and at more expense.
- 6.2.6. Fire doors for example, cannot currently be re-used, companies are not set up for this process. However, we are in contact with two/three companies who believe that re-use a viable proposition. On previous projects Fire and other doors have be repurposed in welfare areas as tables and benches.

BREEAM.

Fig 11: Project relationships and opportunities

6.2.7. If the fixtures and fittings left at vacancy of the properties are in poor condition this will lead to very few re-use opportunities and most likely just recycling.

6.2.8. The Waste Hierarchy Approach is a well-established environmental management principle. It outlines the order of priority for waste management options, highlighting the worst (disposal) and best favorable (prevention) environmental options.

Waste	Preparing for re-use
	Recycling

Fig 12: Diagram of The Waste Hierarchy Approach

- 6.2.9. Each stage within the hierarchy has a distinct meaning. Prevention is the measures taken before a substance, material or product has become waste. This is in order to reduce the quantity of waste and any adverse impacts of the generated waste on the environment and human health.
- 6.2.10. The second stage is preparing for re-use. Prior to demolition the site team will identify materials or products that have become waste; however, they can still be re-used without any other pre-processing e.g., office furniture or television screens which have been previously discarded
- 6.2.11. The following stage is recycling. This is any recovery operation by which waste materials are reprocessed into products, materials or substances whether for the original or other purposes. It includes the reprocessing of organic material but does not include energy recovery and the reprocessing into materials that are to be used as fuels or for backfilling operations.

- 6.2.12. The fourth stage on the waste hierarchy approach is recovery. This is the result of waste serving a useful purpose by replacing other materials which would otherwise have been used to fulfil a particular function. This includes anaerobic digestion, incineration with energy recovery, gasification and pyrolysis which produce energy (fuels, heat and power) and materials from waste and some backfilling.
- 6.2.13. The final process on the waste hierarchy approach is Disposal. This is the least favourable environmental options. Disposal is landfilling or incineration without any thermal recovery.
- 6.2.14. Each substance, material or product in both New City Court and the Georgian Terraces will go through the waste hierarchy approach. Between the Client and Cantillon an agreement will be made prior to demolition which sets out the targets for each stage.

6.3 **Opportunities for Reuse and Recycling within the Development**

6.3.1. When deciding whether to reuse or recycle the furniture and equipment in the building, it is important to take the follow three steps into consideration. Anything that gets removed will be subjected to inspection before being re-used. Will the furniture/equipment require additional protection? For example, glass partitions and suspended ceilings. Finally, what impact does the decision have on the programme? Whether this be a time constraint, financial, or another impact are considerations to be taken when deciding what option to choose. The below diagram shows and in-depth view into the considerations required.

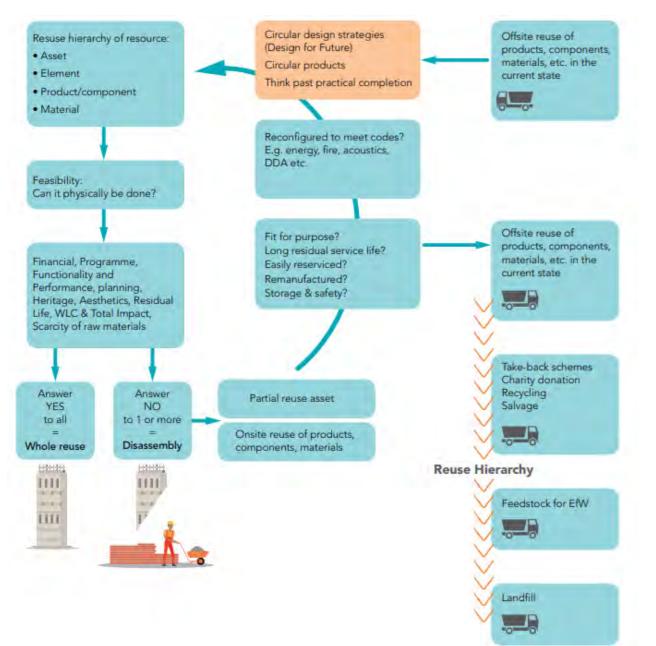


Fig 13: A decision tree for the prioritisation of material reuse from construction/demolition

- 6.3.2. There are many opportunities to reuse and recycle within New City Court and the Georgian Terraces. Furniture, office equipment and raised access flooring are probably the easiest elements to decide on what to reuse, and what to send off to be recycled.
- 6.3.3. All the office areas within the properties are fully furnished to a high standard, meaning plenty of opportunities for reuse. Companies like Globechain and WarpIT help distribute, reuse and recycle surplus resources such as furniture, equipment, fixtures and fittings.
- 6.3.4. The brickwork and blockwork in property have the opportunity to be recycled. Once deconstructed and cleaned, it is possible to assess the quality of these and see if they are fit for repurpose. This is dependent on time, cost and programme.
- 6.3.5. The roof walk areas and courtyard areas on New City Court are comprised of council paving slabs. These could still be reused as they have a long service life and aren't damaged. The slabs are made of concrete so could easily be recycled if that is what the client decided.
- 6.3.6. The buildings concrete slabs can be used for onward reuse. This can be used as type 1 subbase if segregated appropriately. The steel rebar and decking can be recycled as steel is widely recycled.
- 6.3.7. Companies like Rype Office will collect unwanted furniture as long as it meets the reuse requirements, again removing the need to store on site.
- 6.3.8. Tarkett will take away multiple manufactures carpet tiles as long as they are not PVC backed. They store at their warehouse until ready for resale back into the CAT-B market.
- 6.3.9. The Mineral wool insulation can be safely removed and either re-used in another building or reprocessed to make new insulation. An increasing proportion of stone wool insulation is recycled material in the form of briquettes.
- Steel is permanent material that can be infinitely recycled and is recyclable without loss of 6.3.10. quality.
- Timber recycling is the process of turning waste timber in usable products. Timber suppliers 6.3.11. and consumers and turning to a more sustainable timber source. Timber can be recycled down into wood chips which can be used to power homes or plants. Westminster Waste recycle their timber into a Biomass fuel to be used a renewable power in UK power stations.
- 6.3.12. Companies like Tarkett have created specialist machinery to clean and recycle shredded postuse vinyl. They have tested and improved the solution to create vinyl granules that can be integrated into new homogeneous flooring. The granules offer the same properties and

deliver the same performance as virgin raw materials, conserving natural resources and creating a lower impact on the environment, compared to using virgin raw materials.

- 6.3.13. Laminate flooring is recyclable, the majority mass of laminate flooring can be put back into the manufacturing process in the form of wood chips or fibres.
- 6.3.14. Recycled asphalt is often used an aggregate substitute in highway and commercial construction forming part of a base or subbase material on highways and roads as a base layer for new build construction, residential driveways and car parking. Recycled plastics, glass and other waste products are becoming more common in new asphalt design.
- 6.3.15. The new style Raised Access Flooring inside both New City Court and the Georgian Terraces have the opportunity to be reused within current or future developments. Cantillon will load 32 tiles per pallet and these are sent to multiple recyclers/developers who can re-use these. Alternatively, if the client has space to store these, they can be stored and then installed back in the new development.

Fig: 14 Raised Access Flooring palleted at a recent Cantillon project.

Fig: 15 Raised Access Flooring being loaded and sent to new building for refurbishment at a recent Cantillon project.

- 6.3.16. Glass is mostly recycled into bottled glass, lower grade inro glass fibre and the lowest grade into aggregate. Metals, plastics and PVB (plastic in between and laminated glass) removed and distrusted to the appropriate recyclers.
- 6.3.17. The Glass partitions in both New Court and the Georgian Terraces have the potential to be reused in their current form. If the partitions are removed and all fixtures and fittings are kept these can be re-installed into another building. This is a timely process, so if the client was keen to reuse the glazed partitions this will have to be included into the programme.
- 6.3.18. Soil testing allows us to identify exactly what is in the ground and inform us of the best recycling option available. There are various types of testing, including; Waste Acceptance Criteria, Heavy metals and hydrocarbons and asbestos quantification testing.
- 6.3.19. The roof tiles are Lead which is a recyclable metal; it possesses some of the highest recycling rates of all materials commonly used today. With innate properties such as softness and malleability making it highly valuable and usable in a wide variety of applications, lead lends itself perfectly to reuse. Recycled lead is no different from newly-sourced metal in terms of

guality and can often be reused without limits. Additionally, lead-based products are easily identified, allowing for a relatively simple collection and recycling process.

6.3.20. The façade aluminum composite panels can be recycled, the aluminium panel is separated, into aluminium and plastic plates. Such plastics can be recycled into black particles. At present, many manufacturers are engaged in the use of black PE particles for aluminium plastic panels.

6.4 Local Re-processors or Recyclers

- 6.4.1. We have contacted various local re-processors and recyclers during the pre-demolition audit to gauge an idea of the process and how these companies work. Contact and dialogue with companies such as Globechain, Community Wood Recycling, WarpIT and Tarkett which are found in the Circular Economy Guidance for Construction Clients has been helpful and will be consulting with moving forward.
- 6.4.2. Globechain are a reuse marketplace that connect companies with charities, SMEs and induvial to redistribute unneeded construction material while collating social environment and economic data. Globechain has created a digital platform which functions in a similar way to eBay. This platform has so far diverted over 5.1 million kgs of waste from landfill through reuse and with over £2m of savings to charities. The platform is able to provide a financial benefit to the organisation looking to remove the materials from their site through the reduced cost of waste disposal. Corporates use Globechain for waste cost reduction and social impact data.
- 6.4.3. Community Wood Recycling are a social enterprise network who sell a range of reclaimed wood for reuse including flooring, doors, window frames, decking and furniture. Community Wood Recycling saves resources by rescuing and re-using waste timber that would otherwise be landfilled (or at very best downcycled into woodchip). This social enterprise creates sustainable jobs, as well as training and volunteering opportunities, for local people – especially those who might find it difficult to get into or back to employment.
- 6.4.4. WarpIT facilitate the process of organisations accessing, giving away or loaning office furniture, equipment and other resources. Warp-IT's online platform has created a marketplace to redistribute or sell reuse items both within organisations and externally. This process reduces the need to purchase new items, frees up space and reduces office clearance time.
- 6.4.5. Tarkett are a flooring supplier that operate a take back scheme for recycling. They collect many manufacturers carpet tiles and recycle them at plants where the nylon goes back to be

made into Econyl. If it is Tarkett's Ecobase backing it can be put into new production, or if it is bitumen it goes into the roof/road industry.

- 6.4.6. Cantillon currently use Westminster Waste Ltd as a local re-processor and recycler on one of our sites. Westminster Waste is a Construction/Demolition waste recycling company in London who ensure zero of our waste goes to landfill.
- 6.4.7. Cantillon are very engaged in the Circular Economy process and have successful delivered recent projects with great Circular Economy Measures. At Warwick Court, Cantillon successfully reused 14,000 Raised Access Floor panel, 17,390 carpet tiles, over 75 linear meters of glass partitions and various stainless catering equipment.

6.5 **Overall Recycling Targets**

6.5.1. Recent projects have shown that Cantillon has recycled above 99% of all non-hazardous materials; Ilona Rose House, Blossom St, City Gate House, Camden Town Hall and all are projects within London.

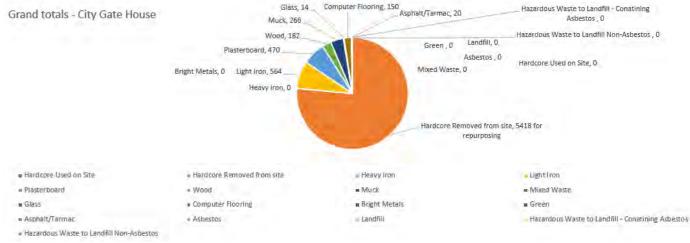


Fig: 16 Cantillon previous recycling target

- 6.5.2. Cantillon Limited produce pre-demolition audits for proposed developments, with the aim of identifying and assisting in maximising resource recovery. This is achieved by employing the maximum potential for re-use, recycling and recovery at the planning stage of the contract.
- 6.5.3. Our belief is that this phase of the project is a crucial part of the whole project and that it is essential that all the contractors involved in delivering the project fully appreciate and understand the potential impacts of waste generated and contribute to ensuring high rates of waste re-use, recycling and diversion from landfill.

6.5.4. The project delivery team will set targets for waste stream based on current industry guidance, best practice and codes of practice. During the demolition and soft strip phase, Cantillon will carry out continuous monitoring and recording of the waste produced and removed from site. This data will be compared to the previous monthly period and a report can be issued.

6.6 **Overall Landfill Diversion Rate**

- 6.6.1. Cantillon have an above 99% landfill diversion rate target of all non-hazardous waste.
- 6.6.2. Surplus or waste materials arise from either the materials imported to site or from those generated on site. Imported materials are those, which are brought to the project for inclusion into the permanent works. Generated materials are those, which exist on the project such as brick, concrete and steel generated from the demolition works.


- 6.6.3. However, there are other considerations to waste management such as waste reduction, segregation of waste, disposal of waste, financial impacts of waste disposal and recording, monitoring, education and reviewing.
- 6.6.4. Trade Contractors, Design Team and Suppliers are all being encouraged to look at ways to minimise the amount of waste produced at the work face.
- 6.6.5. Identification and segregation of materials to enhance recycling. The building will be thoroughly soft stripped to ensure the hardcore from the demolition is clean and suitable to be recycled. Materials bought to site for creating partitioning for welfare will be reused, partitions constructed from ply so they can be dismantled and reused. This is all to reduce the amount of waste and surplus materials, which traditionally would be skipped and sent to landfill. Cantillon will continue to identify waste saving opportunities and we will monitor this throughout the project.

7 Quantification of Key Materials

7.1 Building Measurements

7.1.1. After our site visit Cantillon built up table 7.2 to identify and quantify the key materials of the building. Using the drawings provided from Allford Hall Monaghan Morris Architects Ltd, these were loaded into Bluebeam to find the dimensions and properties of the building. The data pulled from the drawings was then inputted into the below spreadsheets to formulate table 7.2.

7.2 Table of materials

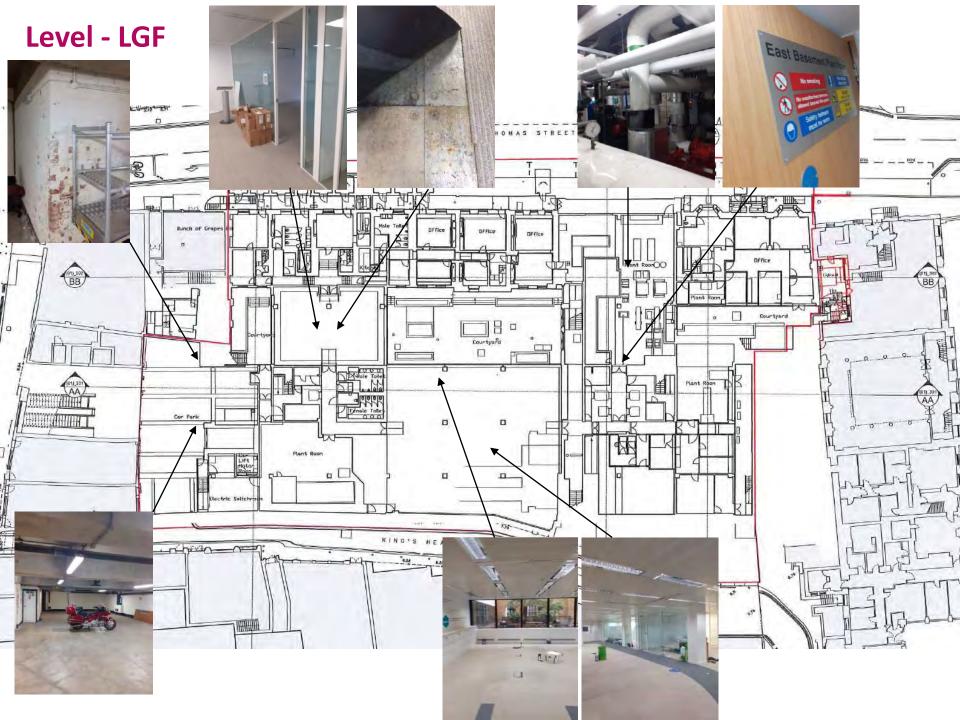
		New City Court		
European Waste catalogue	Key Group	Description	Location	Tonnes
17 01 01	Concrete	Concrete Frame	All Floors	10,215
17 04 05	Steel	Rebar	All Floors	405
17 02 02	Glazing	Façade Windows	Façade	22
17 01 02	Brickwork	Brickwork Façade/Walls	Façade/Walls	156
17 06 02	Mineral	Façade Insulation	Façade	0.5
17 01 02	Blockwork	Blockwork Walls	All Floors	440
04 02 22	Carpet	Carpet Tiles	LG-Fourth	22
17 08 02	Gypsum	Internal Stud Partition to walls	LG-Fourth	30
17 02 01	Timber	Timber Studs to Plasterboard	LG-Fourth	15
17 04 05	Lightweight Steel	Suspended Ceilings	LG-Fourth	28
17 01 07	Tiles and Ceramics	Floor Tiles	Ground-Fourth	10
17 02 02	Glazing	Internal Partitions	LG-Fourth	195
04 02 22	Floor Coverings	Vinyl Flooring	LG-Fourth	3
17 02 01	Wood	Wooden Laminate Flooring	Second Floor	2
17 04 05	Light Steel	Raised Access Flooring	LG-Fourth	274
17 04 03	Lead	Lead Roofing	Roof	1
17 04 02	Aluminium	Aluminium Cladding	Façade	78
17 01 01	Concrete	Paving Slabs	Roof	100
17 03	Asphalt	Asphalt Roll Roofing	Roof	33

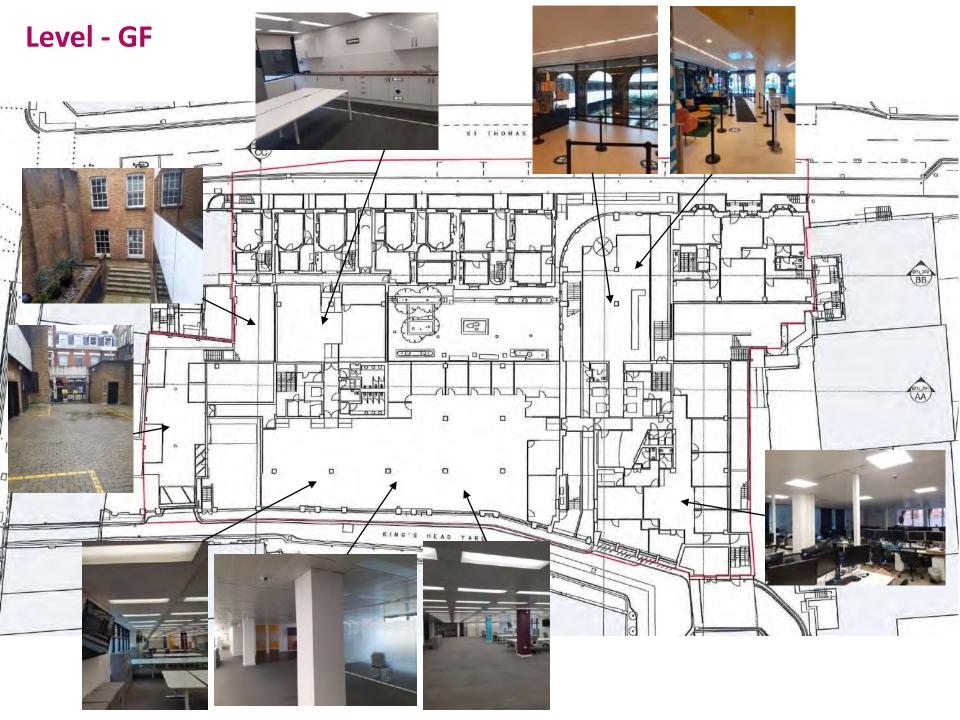
		Georgian Terrace		
European Waste catalogue	Key Group	Description	Location	Tonnes
17 02 02	Glazing	Façade Windows	Façade	1
17 01 02	Brickwork	Brickwork Façade/Walls	Façade	105
17 06 02	Mineral	Façade Insulation	Façade	0.3
17 01 02	Blockwork	Blockwork Walls	Façade	68
04 02 22	Carpet	Carpet Tiles	LG – Third	4
17 08 02	Gypsum	Internal Stud Partition to walls	LG – Third	12
17 02 01	Timber	Timber Studs to Plasterboard	LG – Third	10
17 04 05	Lightweight Steel	Suspended Ceilings	First Floor	1
17 06 04	Mineral Fibre	Suspended ceiling Tiles	Second Floor	1
17 01 07	Tiles and Ceramics	Floor Tiles	Toilet Areas	1
17 02 02	Glazing	Internal Partitions	First – Third	37
04 02 22	Floor Coverings	Vinyl Flooring	First – Third	2
17 04 05	Light Steel	Raised Access Flooring	LG – Third	37

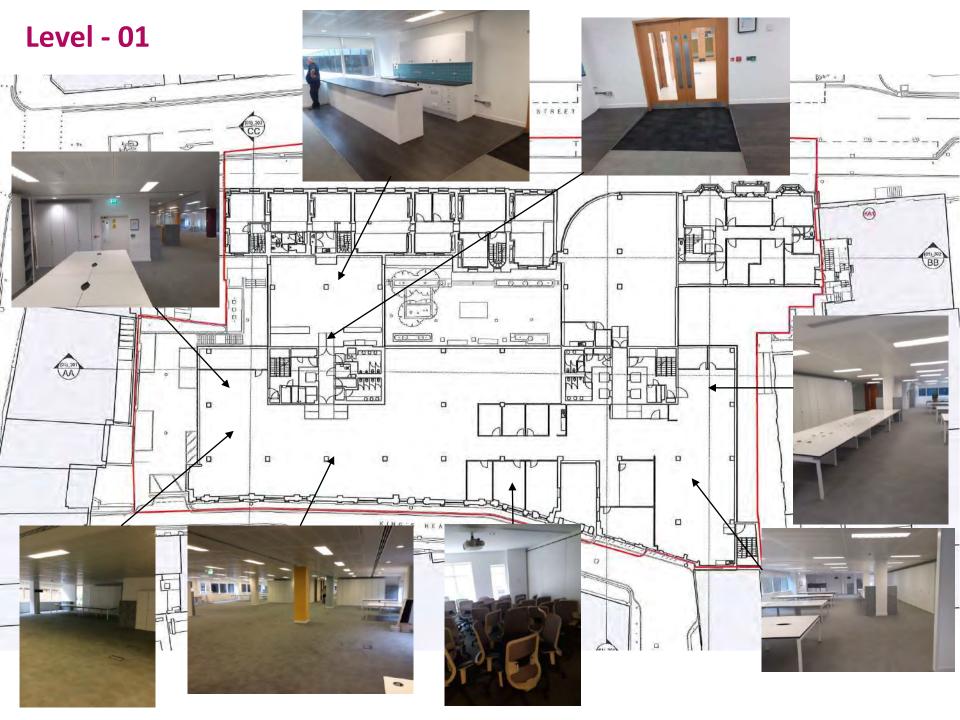
Overall Project Reuse and Recycling Targets 7.3

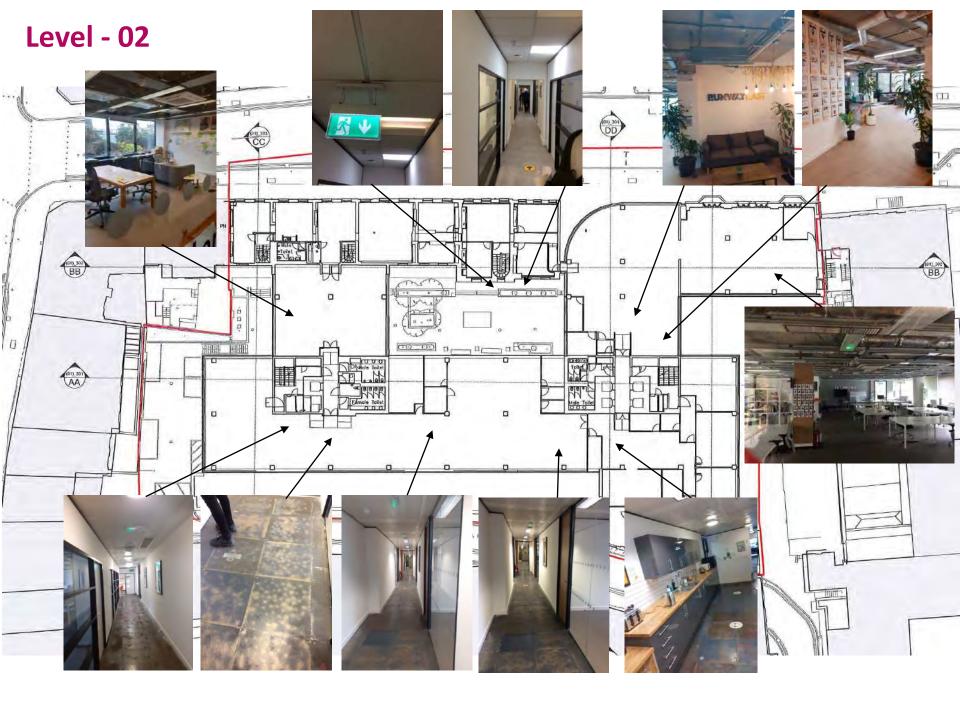
Options 1 and 2 are client led decisions to be made, whilst options 3 and 4 are contractor led decisions.

Circular Principles Key as set out in the UK GBC Circular economy guidance for construction 7.3.1. clients:1) Re-Use existing asset. 2) Recover materials and products on site or from another site. 3) Share materials or products for onwards reuse. 4) Recycle.

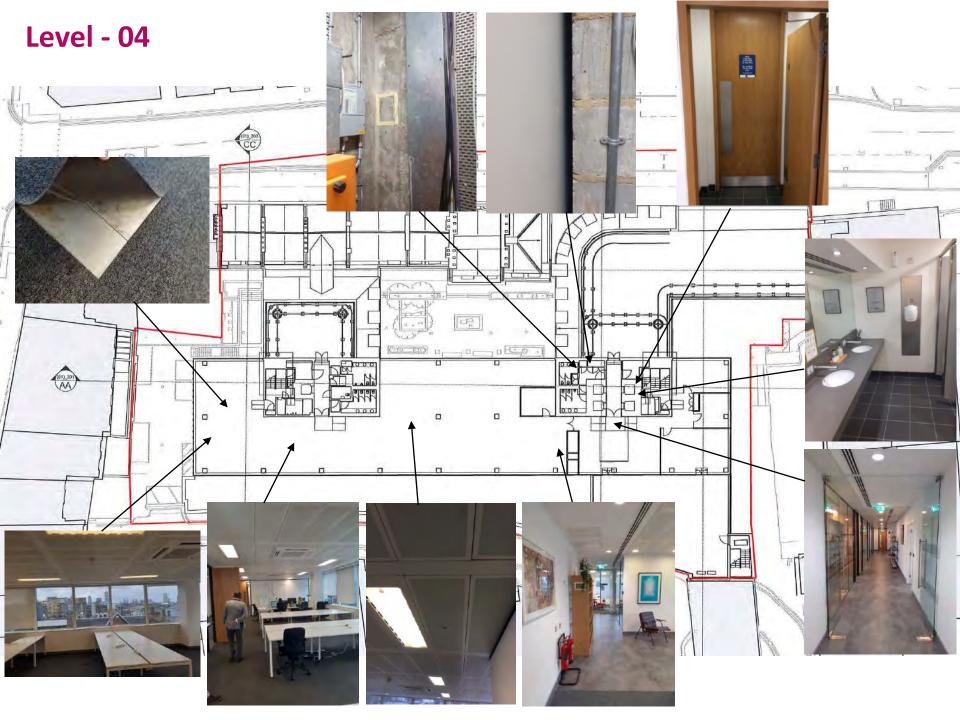

*0	Incoi	ioc
- F	10	ICL

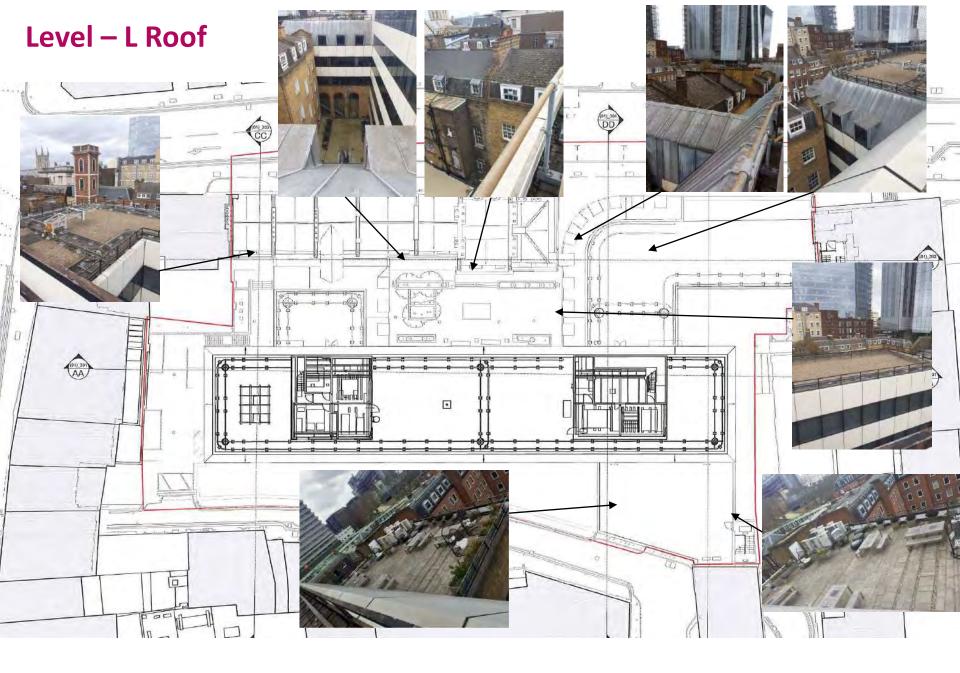

European Waste catalogue	Key Group	Description	Tonnes	Comments	Circular Principles Options 1-4	*Target %
17 01 01	Concrete	Concrete Frame	10,215	See paragraph; 5.2.5, 6.3.6	3/4	95%
17 04 05	Steel	Rebar	405	See paragraph; 6.3.10	4	99%
17 02 02	Glazing	Façade Windows	23	See paragraph; 5.4.5, 6.3.16	4	95%
17 01 02	Brickwork	Brickwork Façade/Walls	261	See paragraph; 5.4.3	4	95%
17 06 02	Mineral	Façade Insulation	0.8	See paragraph; 6.3.9	4	95%
17 01 02	Blockwork	Blockwork Walls	508	See paragraph; 5.2.6	4	95%
04 02 22	Carpet	Carpet Tiles	26	See paragraph; 5.3.7, 5.3.8, 6.3.8	3/4	90% onward reuse, 9% recycle
17 08 02	Gypsum	Internal Stud Partition to walls	42	See paragraph; 5.3.17, 5.3.18	4	95%
17 02 01	Timber	Timber Studs to Plasterboard	25	See paragraph; 6.3.11	4	99%
17 04 05	Lightweight Steel	Suspended Ceilings	29	See paragraph; 5.3.11	4	99%
17 01 07	Tiles and Ceramics	Floor Tiles	11	See paragraph; 5.3.23	4	95%
17 02 02	Glazing	Internal Partitions	232	See paragraph; 5.3.30, 5.3.31, 6.3.17	3/4	95%
04 02 22	Floor Coverings	Vinyl Flooring	5	See paragraph; 5.3.28, 5.3.29, 6.3.12	4	95%
17 02 01	Wood	Wooden Laminate Flooring	2	See paragraph; 6.3.13	4	95%
17 04 05	Light Steel	Raised Access Flooring	311	See paragraph; 5.3.3, 6.3.15	3/4	90% onward reuse, 9% recycle
17 04 03	Lead	Lead Roofing	1	See paragraph; 6.3.19	4	99%
17 04 02	Aluminium	Aluminium Cladding	78	See paragraph; 6.3.20	4	99%
17 01 01	Concrete	Paving Slabs	100	See paragraph; 5.4.8, 5.2.5	4	99%
17 03	Asphalt	Asphalt Roll Roofing	33	See paragraph; 6.3.14	4	95%

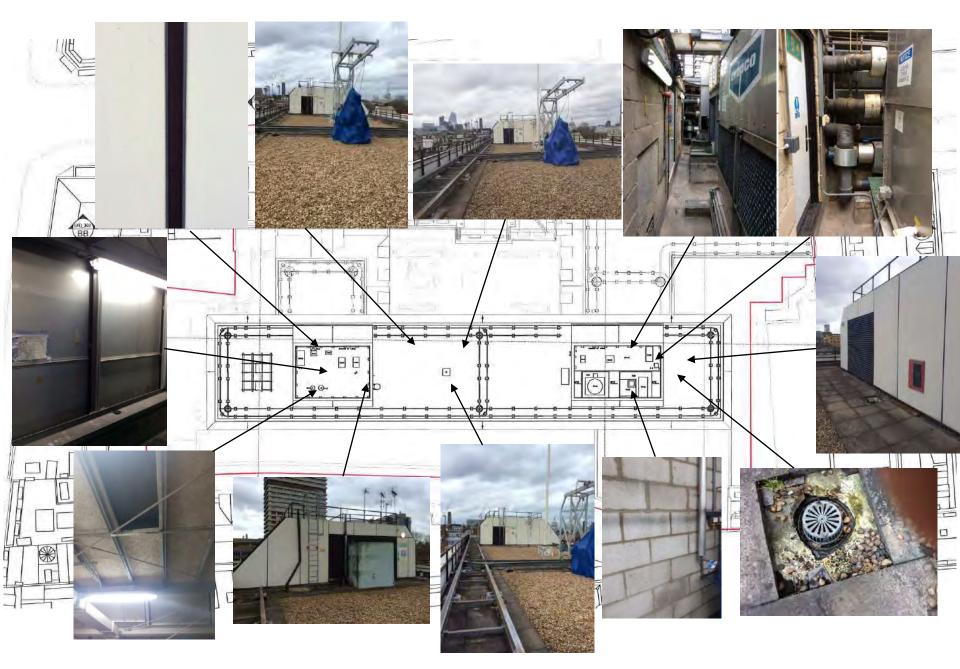

oject targets including areas not accessed during initial audit.

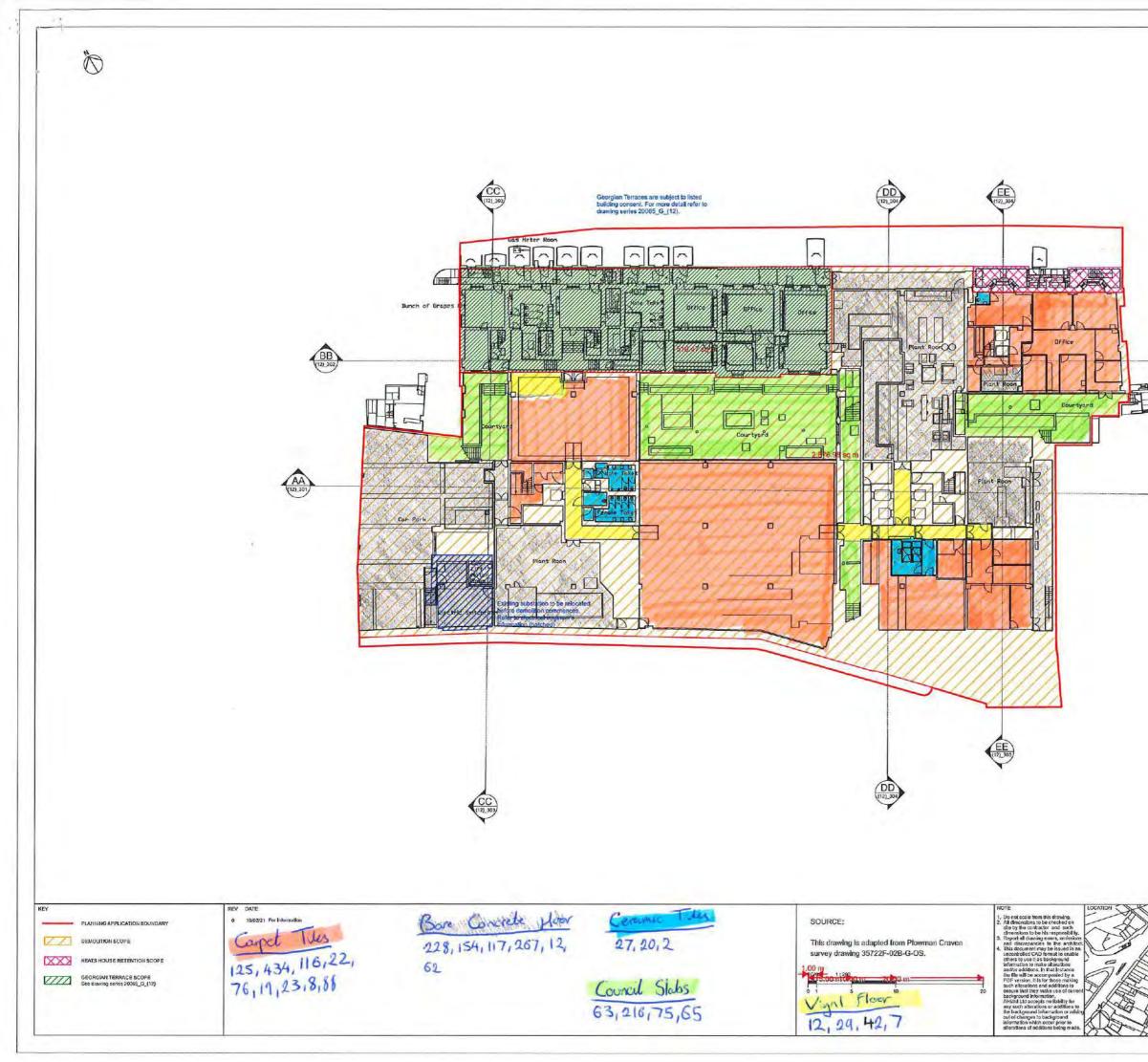

cantillon **F**

APPENDIX 1 Drawing Annotations

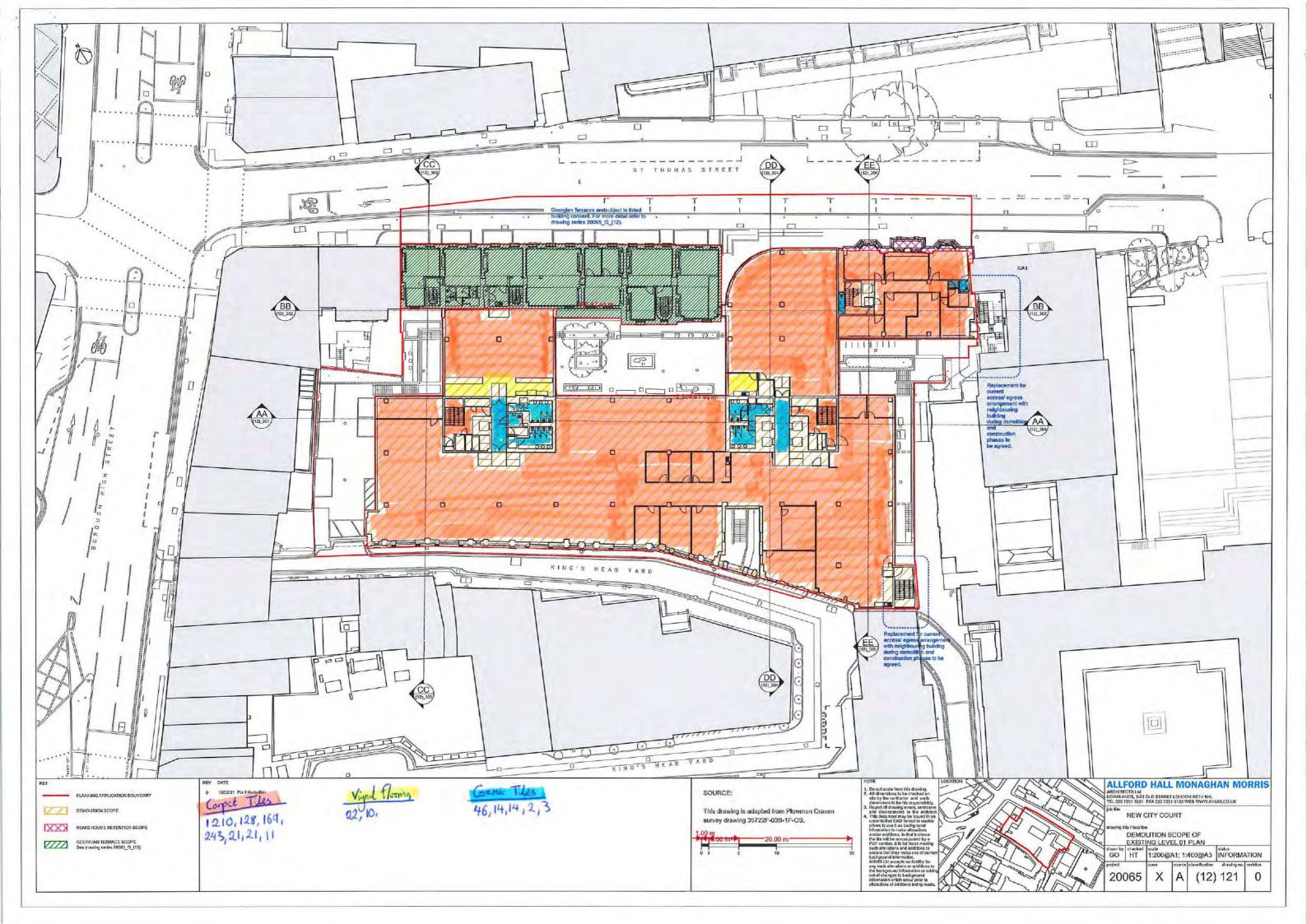


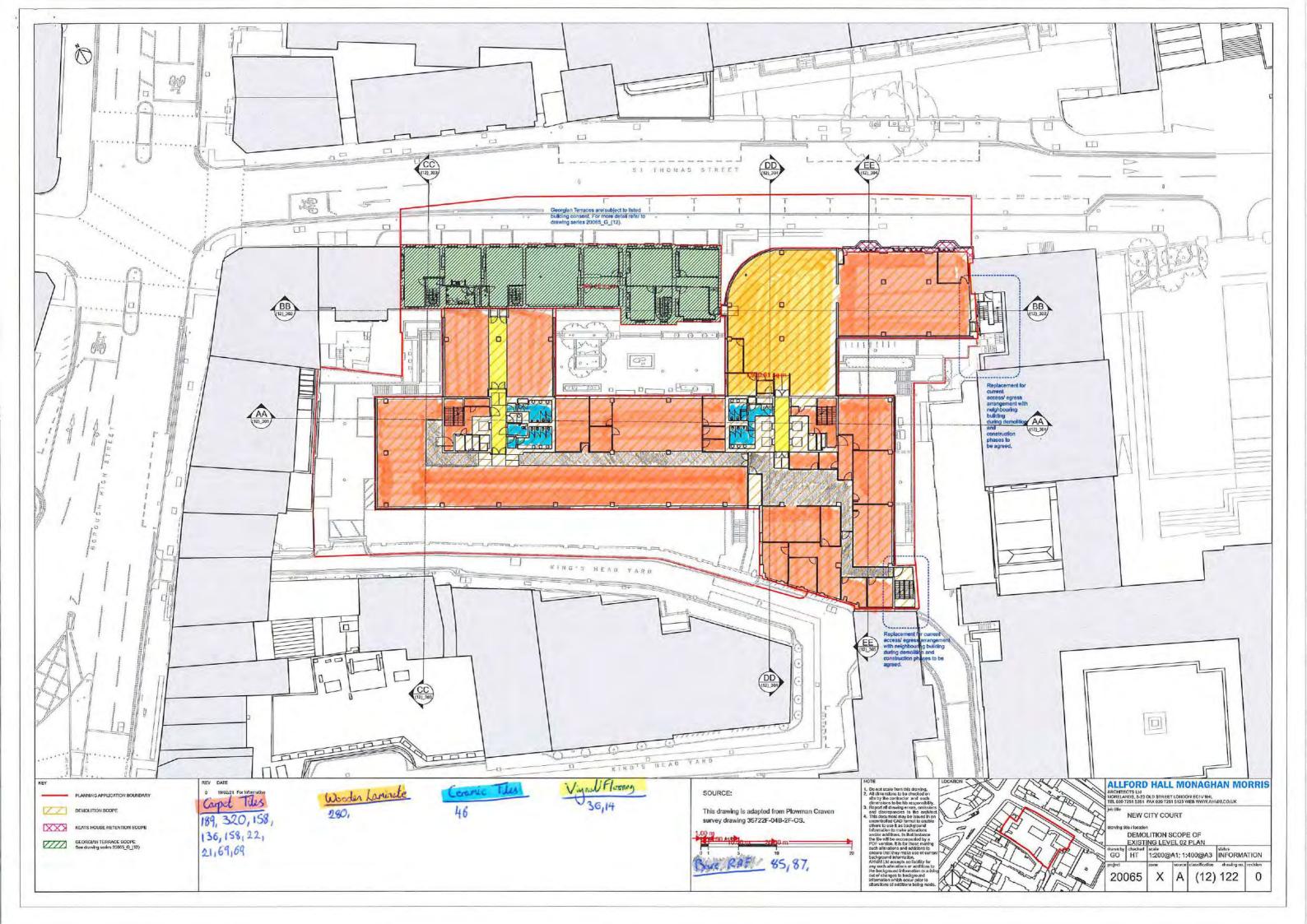


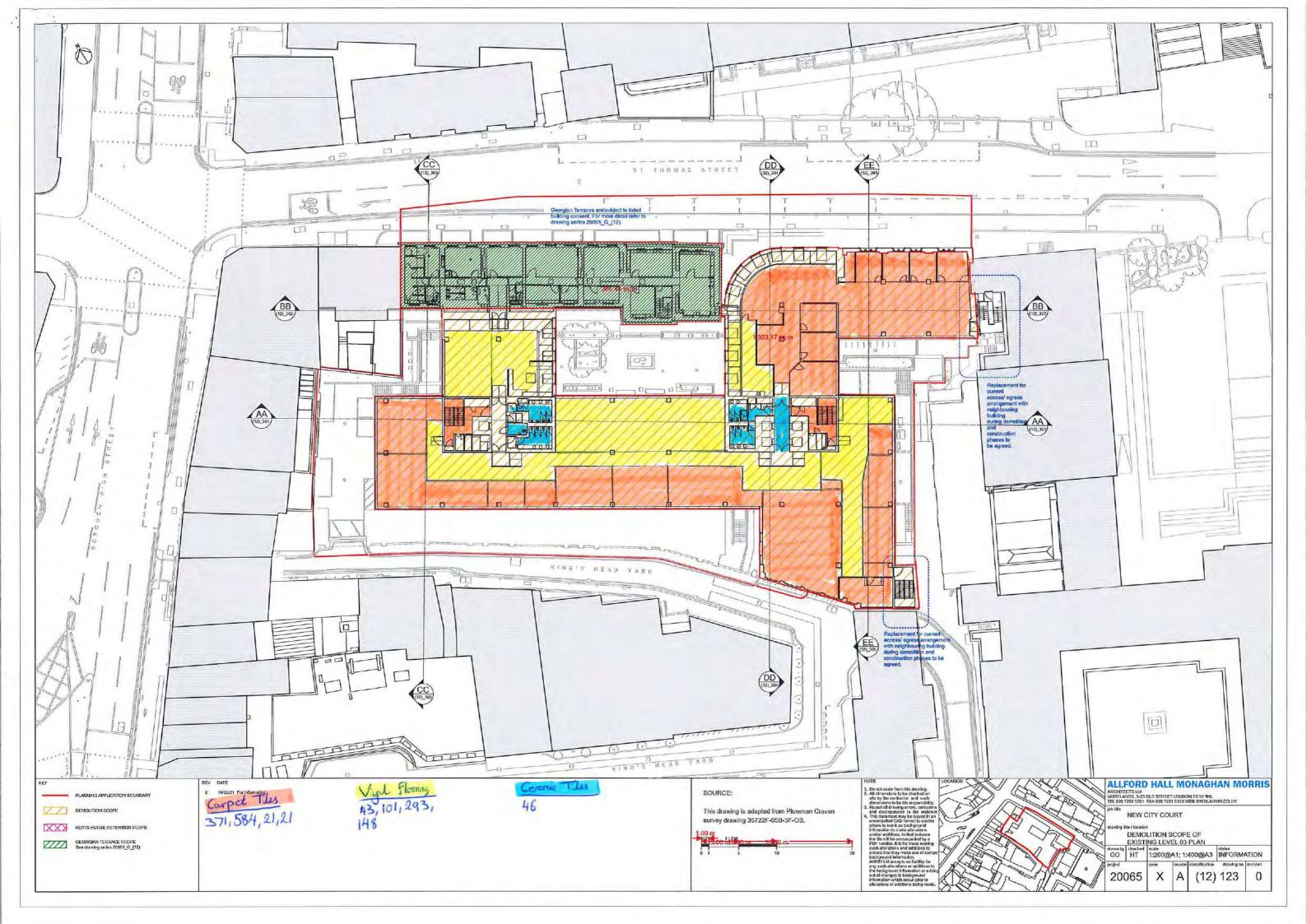


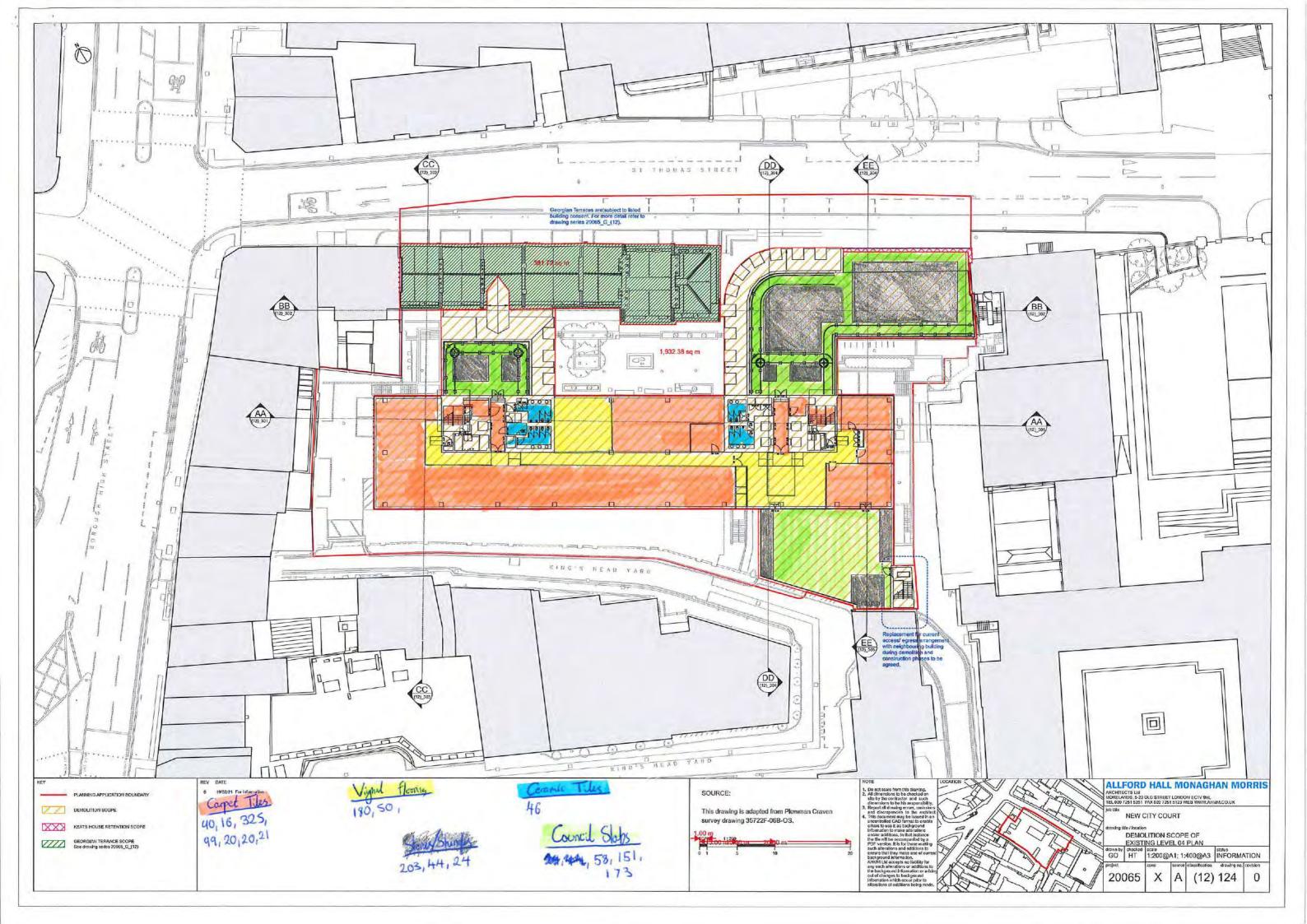


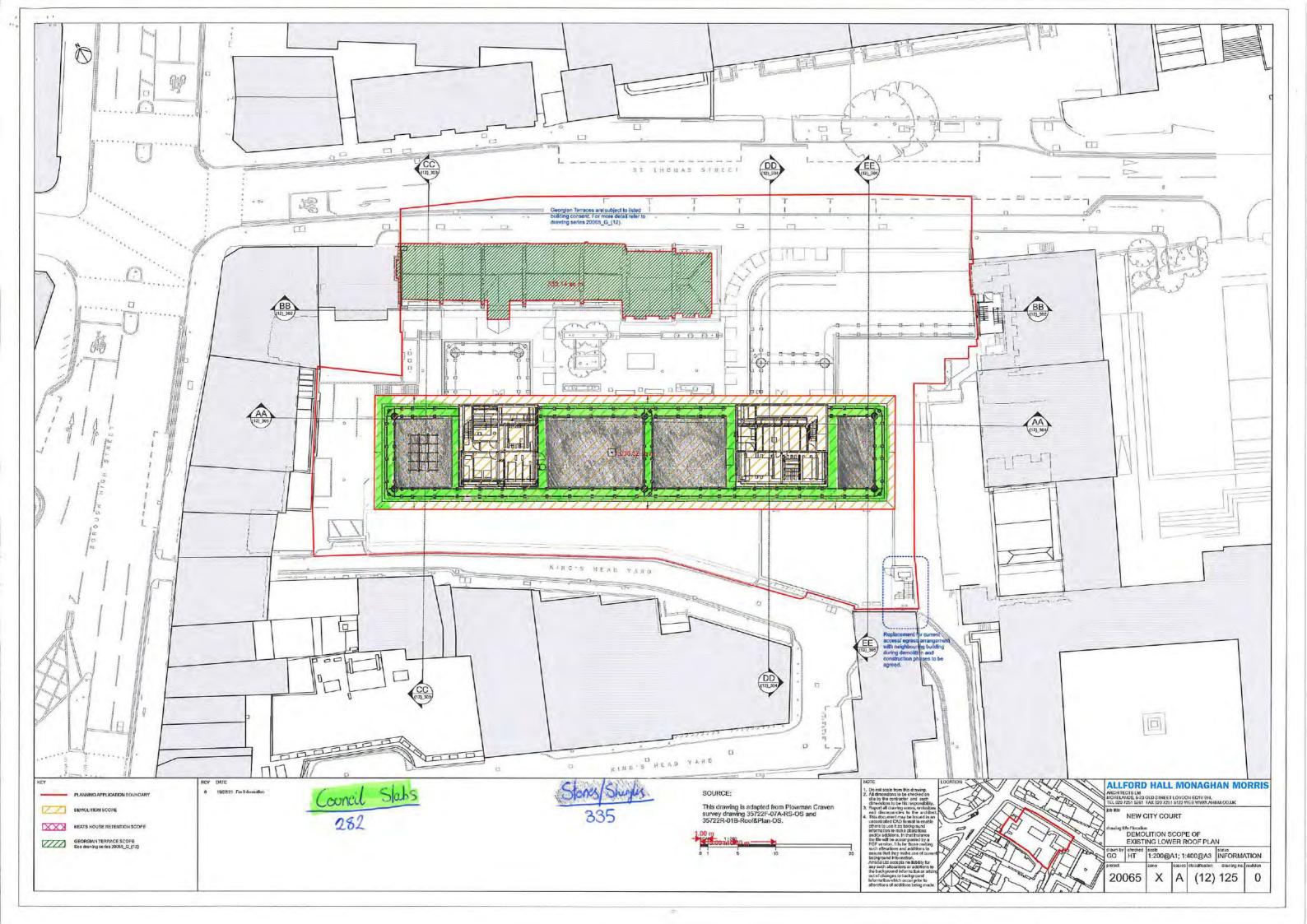
Level – U Roof

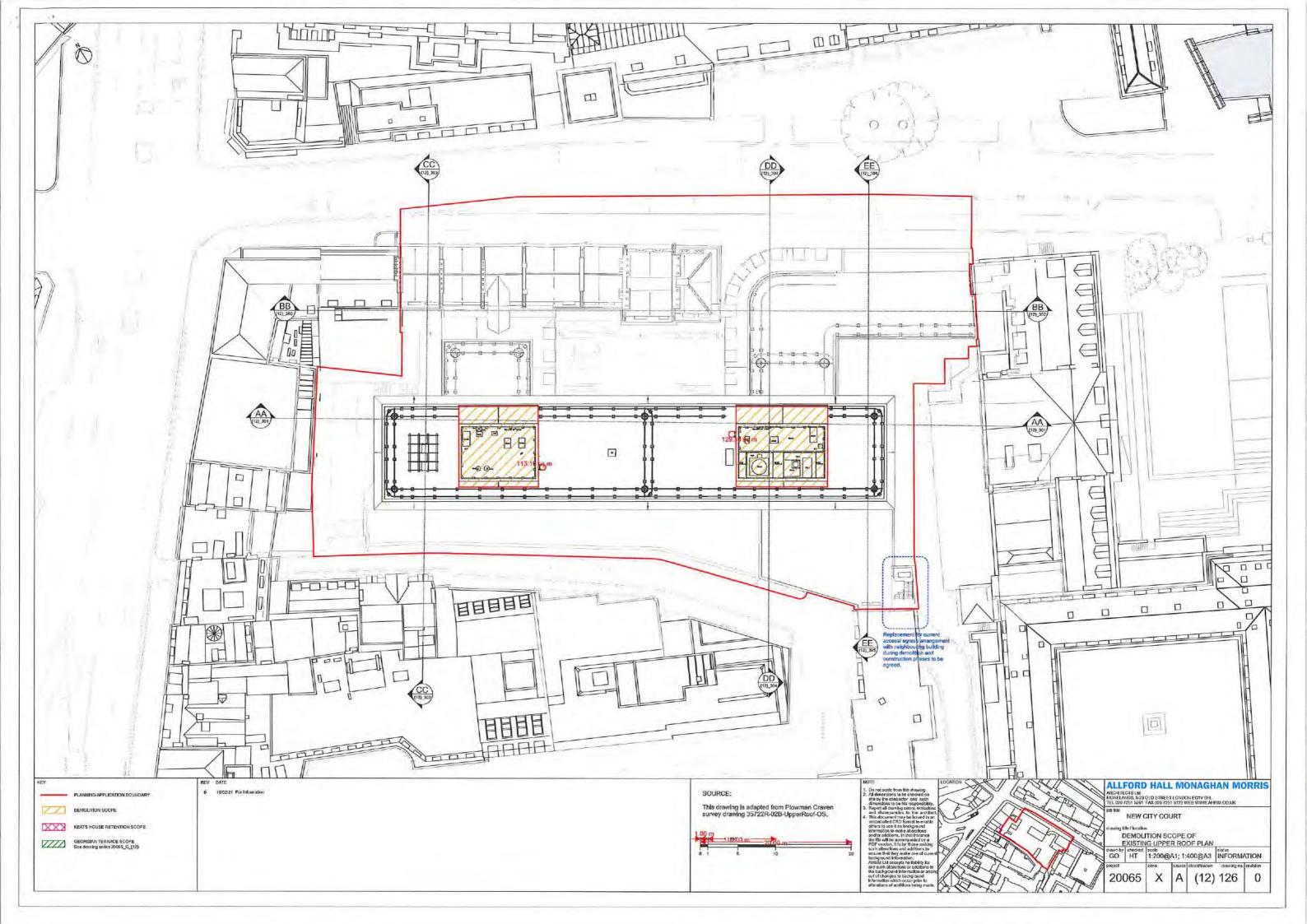

APPENDIX 2 Bluebeam Drawing Breakdown

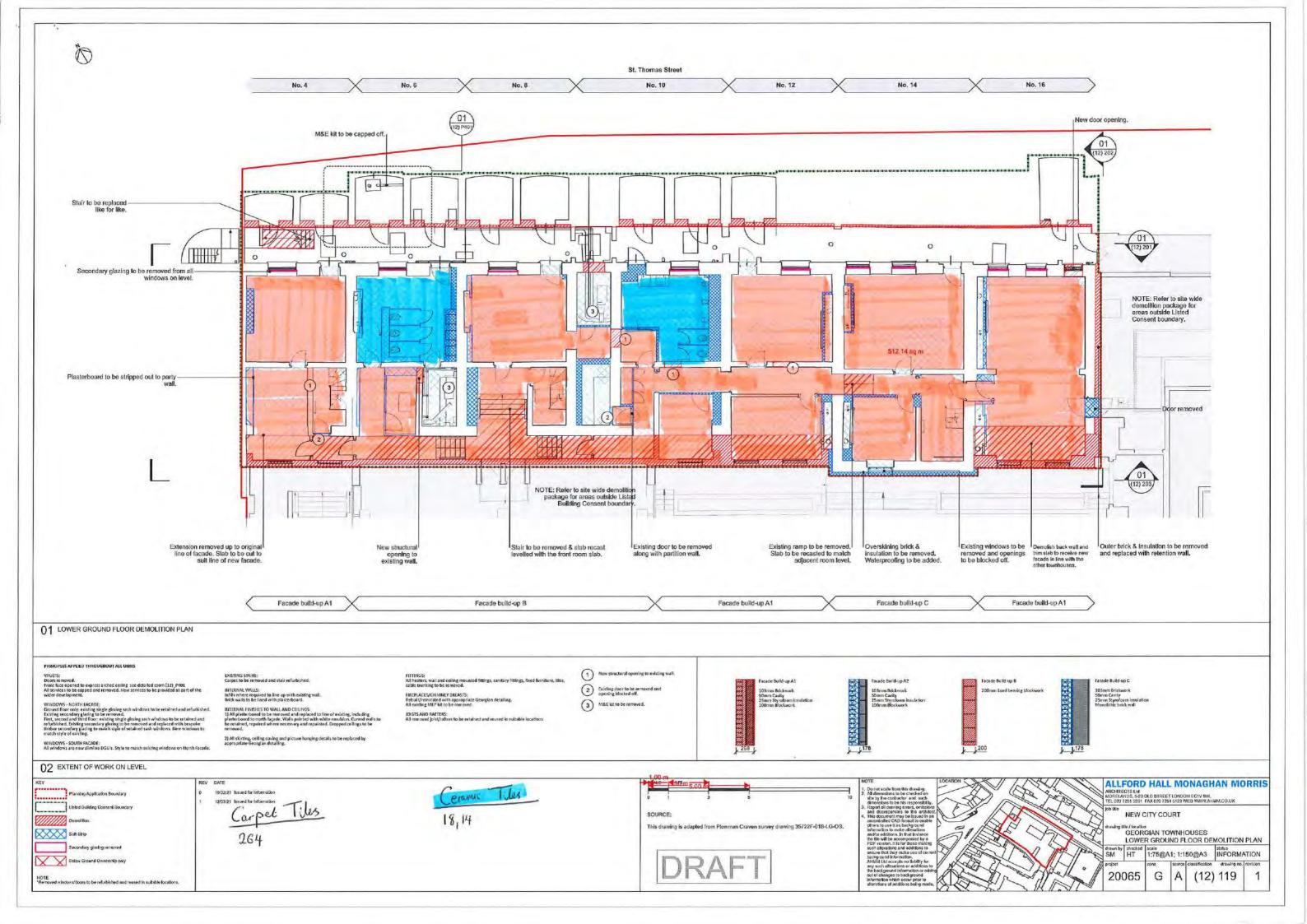


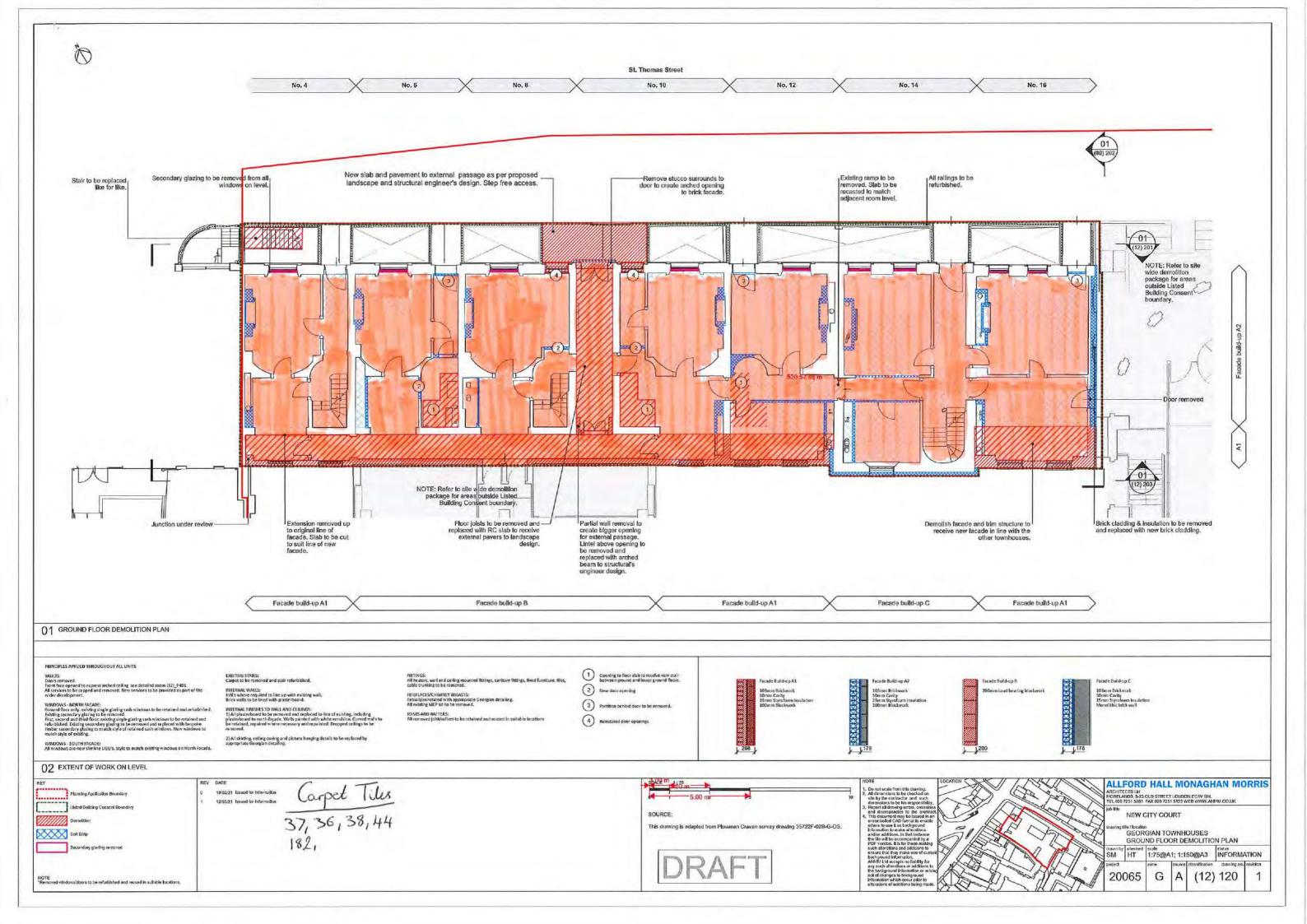


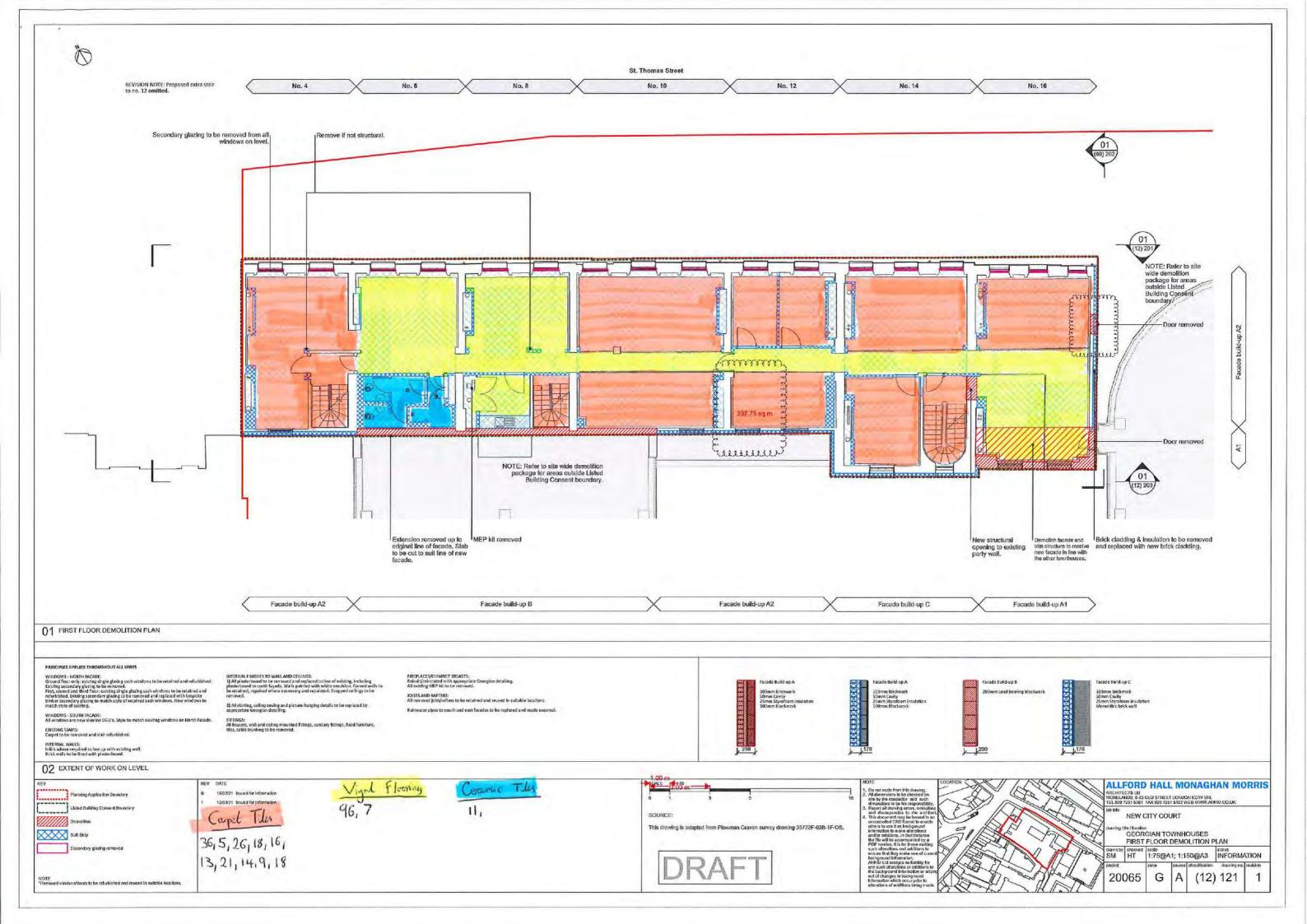

RR						
AA (12)_301						
			540	NAGHAN	MOR	RIS
	ARCHITECTS LId MORELANDS, 5-23 TEL 020 7251 5261	OLD STREET	LONDON 6123 W	NECIVIONL E8 WWW.AHMM.CO.U	к	
	ARCHITECTS Lid MORELANDS, 5-23 TEL 020 7251 5281 Job title NEW C drawing title / location DEMO	OLD STREET FAX 020 725	JRT COPE	OF	к	

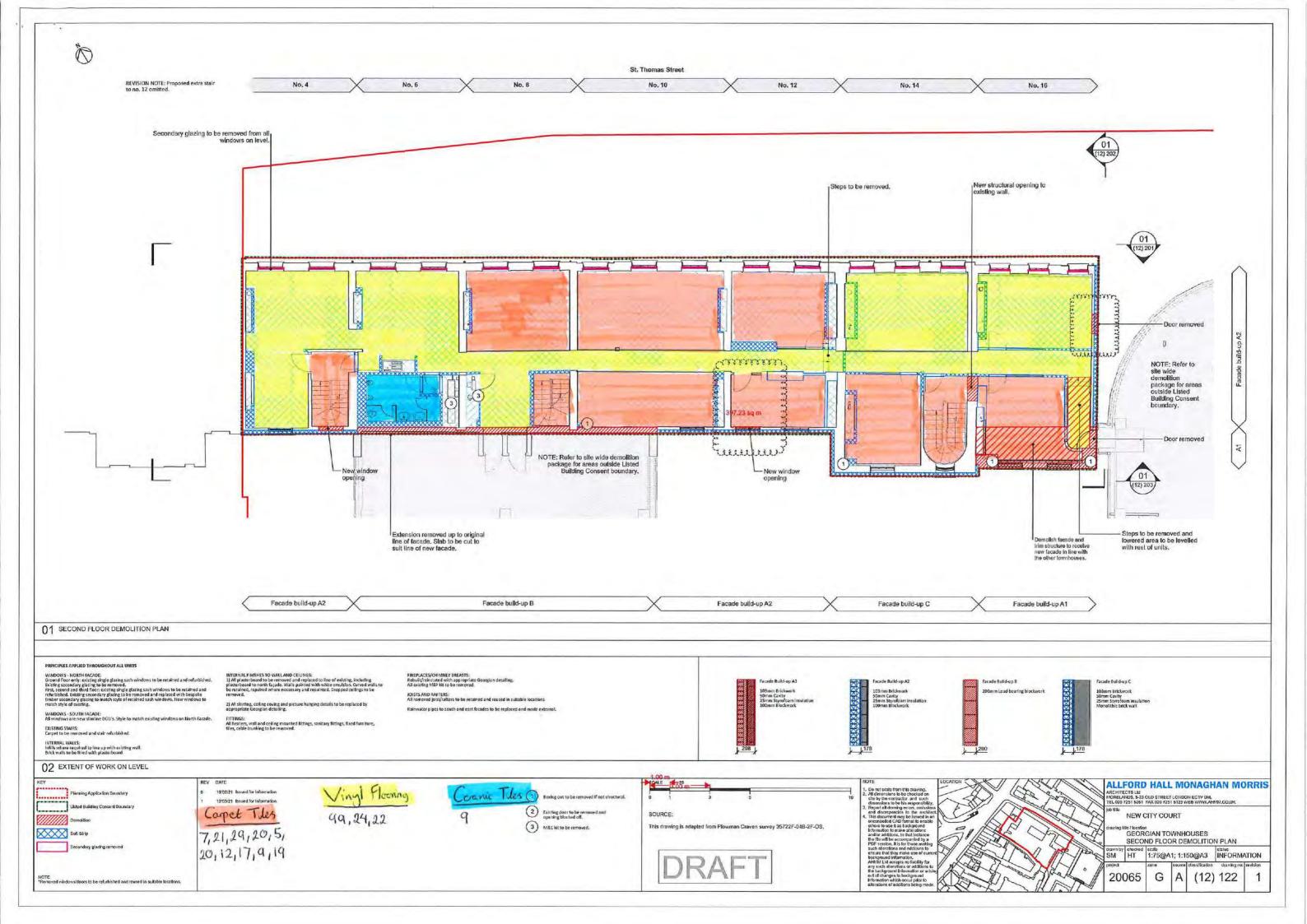


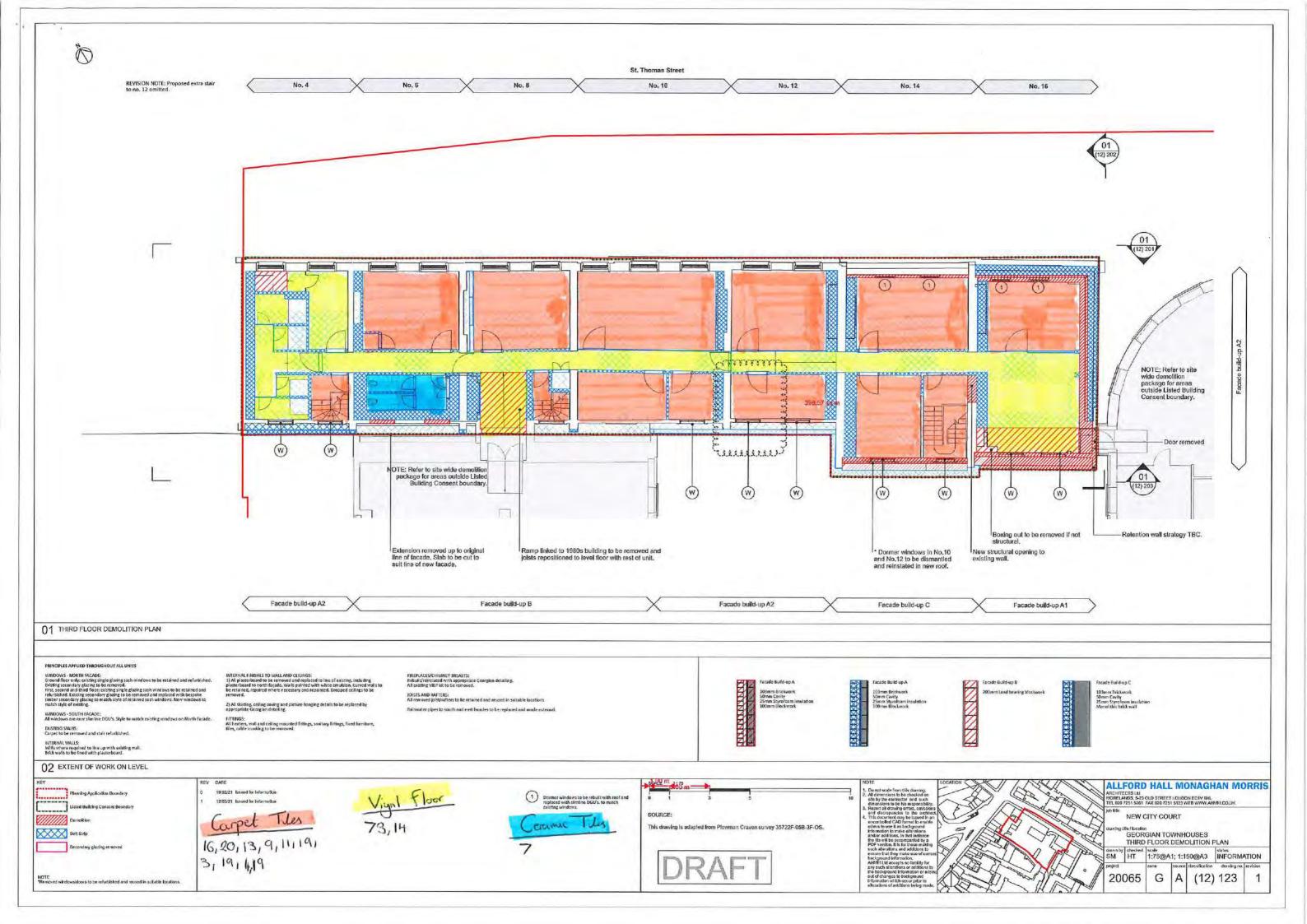


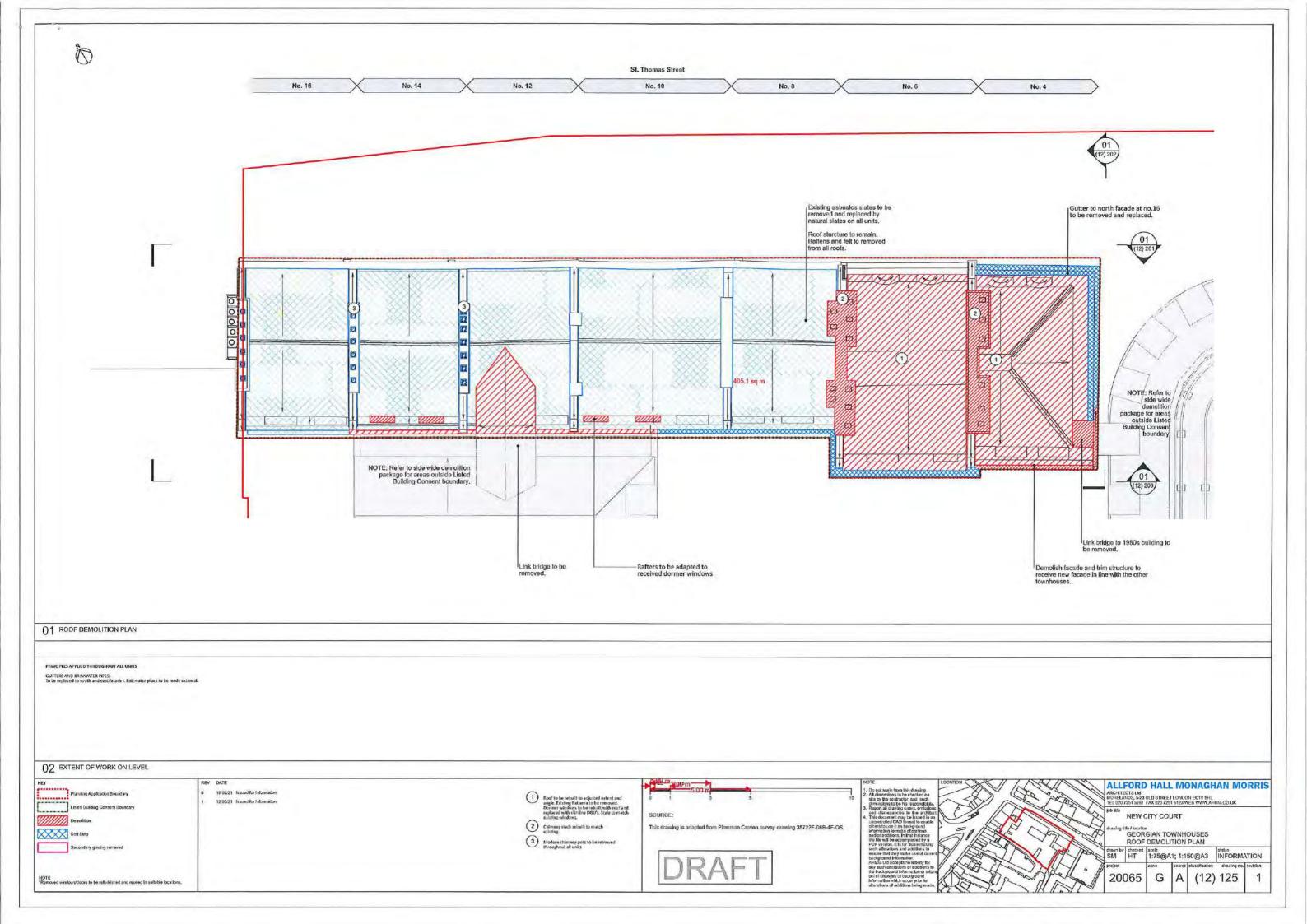












New City Court – Pre-demolition Audit

APPENDIX 3 Excel Quantify Calculations

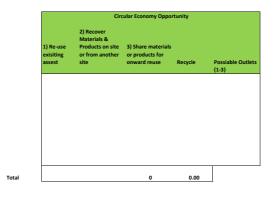
Area	Slabs [m2]	Suspended ceilings [m2]
Lower Ground Floor	2877	
Ground Floor	2582	
First Floor	2210	
Second Floor	1921	
Third Floor	1923	
Fourth Floor	1932	
Lower Roof	1037	
Upper Roof	242	
Totals	14724	0

					Pre-demolit	ion Audit						1	
Element	Component	Material	EWC	Area [m2]	Depth [m]	Height [m]	Nr	Actual volume	Conversion factor [Tonnes / m3]	Conversion factor Tonnes / m2]	Tonnes		1) Re-use exisiting assest
Floors	Lower Ground Floor Slab Lower Ground Floor Rebar	Concrete Steel	17 01 01 17 04 05	2877 2877	0.25			719.25	2.4 0.11		1726 79		N/A N/A
	Ground Floor Slab Ground Floor Rebar	Concrete Steel	17 01 01 17 04 05	2582 2582	0.25			645.5	2.4 0.11		1549 71		N/A N/A N/A
	First Floor Slab First Floor Rebar	Concrete Steel	17 01 01 17 04 05	2210 2210	0.25			552.5	2.4 0.11		1326 61		N/A N/A N/A
	Second Floor Slab Second Floor Rebar	Concrete Steel	17 01 01 17 04 05	1921 1921	0.25			480.25	2.4 0.11		1153 53		N/A N/A N/A
	Third Floor Slab Third Floor Rebar	Concrete Steel	17 01 01 17 04 05	1923 1923	0.25			480.75	2.4 0.11		1154 53	1182	N/A N/A N/A
	Fourth Floor Slab Fourth Floor Slab	Concrete Steel	17 01 01 17 04 05	1932 1932	0.25			483	2.4 0.11		1159 53		
	Lower Roof Floor Slab Lower Roof Floor Rebar	Concrete Steel	17 01 01 17 04 05	1037 1037	0.25			259.25	2.4 0.11		622 29	622	N/A N/A
	Upper Roof Floor Slab Upper Roof Floor Rebar	Concrete Steel	17 01 01 17 04 05	242 242	0.25			60.5	2.4 0.11		145 7		N/A
						Cond	crete m3	3681		Frame Total	8834		
			Total m2	14724		Total	Cubic m3	3681		Rebar Toral	405		
												Totals	0

2) Recover Materials &		
Products on site or		Recycle
N/A	1726.2	
N/A		79.12
N/A	1549.2	
N/A		71.01
N/A		#REF!
N/A	1326	
N/A		60.78
N/A		0.00
N/A	1152.6	
		52.83
N/A		0.00
N/A	1153.8	
N/A		52.88
N/A		0.00
N/A	622.2	
N/A		28.52
N/A		6.66
	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A 1549.2 N/A 1326 N/A 1326 N/A 1152.6 N/A 1152.6 N/A 1153.8 N/A 1153.8 N/A 1153.8 N/A 622.2

ny Opportunity Possiable Outlets (1-3) Type 1 subbase if segregated appropriately. Recycled aggregate in concrete Type 1 subbase if segregated appropriately. Recycled aggregate in concrete Type 1 subbase if segregated appropriately. Recycled aggregate in concrete Type 1 subbase if segregated appropriately. Recycled aggregate in concrete Type 1 subbase if segregated appropriately. Recycled aggregate in concrete Type 1 subbase if segregated appropriately. Recycled aggregate in concrete Type 1 subbase if segregated appropriately. Recycled aggregate in concrete Type 1 subbase if segregated appropriately. Recycled aggregate in concrete Type 1 subbase if segregated appropriately. Recycled aggregate in concrete

14482 3620.5


				Leasth Dia					Commiss 6 - 27	Committee ()	
lement	Component	Material	EWC	Length [Lin m] Height [m]	Area [m2]	Depth [m]	Nr	Actual volume	Conversion factor [Tonnes / m3]	Conversion factor Tonnes / m2]	Tonnes
ckwork	Elevation 01	Bricks	17 01 02		26	0.135		4	1.9		7
	Elevation 02	Bricks	17 01 02		0	0.135		0	1.9		0
	Elevation 03	Bricks	17 01 02		150	0.135		20	1.9		38
		Bricks	17 01 02			0.135		0	1.9		0
	Elevation 05	Bricks	17 01 02			0.135		0	1.9		0
	Elevation 06	Bricks	17 01 02			0.135		0	1.9		0
	Elevation 07	Bricks	17 01 02		49	0.135		7	1.9		13
		Bricks	17 01 02		225	0.135	Total M3	0	1.9		0
ilazing	Elevation 01	Glass	17 02 02	Total m2	163	0.05	TOLATINIS	30 8	0.52	Total	58 4
	Elevation 02	Glass	17 02 02		23	0.05		1	0.52		1
	Elevation 03	Glass	17 02 02		524	0.05		26	0.52		14
		Glass	17 02 02			0.05		0	0.52		0
	Elevation 05	Glass	17 02 02			0.05		0	0.52		0
	Elevation 06	Glass	17 02 02		155	0.05		8	0.52		4
	Elevation 07	Glass	17 02 02			0.05		0	0.52		0
		Glass	17 02 02			0.05		0	0.52		0
										Total	22
nsulation	Elevation 01	Mineral	17 06 04		26	0.1		3	0.02		0.05
açade	Elevation 02	Mineral	17 06 04		0	0.1		0	0.02		0.00
	Elevation 03	Mineral	17 06 04		150	0.1		15	0.02		0.30
		Mineral	17 06 04			0.1		0	0.02	I	0.00
	Elevation 05	Mineral	17 06 04			0.1		0	0.02		0.00
	Elevation 06	Mineral	17 06 04			0.1		0	0.02		0.00
	Elevation 07	Mineral	17 06 04		49	0.1		5	0.02		0.10
		Mineral	17 06 04			0.1		0	0.02		0.00
ladding	Elevation 01	Aluminium			242	0.02		5		Total 0.05536	0.5
Juminiunum er mm thick	Elevation 02					0.02		2		0.05536	4
.768kg per m2	Elevation 02				78					0.05536	
	Elevation 03				939	0.02		19		0.05536	52
						0.02		0			0
	Elevation 05					0.02		0			0
	Elevation 06				155	0.02		3		0.05536	9
	Elevation 07					0.02		0			0
				Total m2	225	0.05	Total M3	0 23		Total	0 78
ead	Lower Ground Floor	Lead				0.018		0	0.21		0
	Ground Floor	Lead				0.018		0	0.21		0
		Lead									
	First Floor					0.018		0	0.21		0
	Second Floor	Lead				0.018		0	0.21		0
	Third Floor	Lead				0.018		0	0.21		0
	Fourth Floor	Lead			154	0.018		3	0.21		1
	Lower Roof	Lead				0.018		0	0.21		0
	Upper Roof	Lead		Total m2	1397	0.018	Total M3	0 46	0.21	Total	0
sphalt oof	Lower Ground Floor	Asphalt	17 03		0	0				0.0054	0
	Ground Floor	Asphalt	17 03		0	0				0.0054	0
	First Floor	Asphalt	17 03		0	0				0.0054	0
	Second Floor	Asphalt	17 03		0	0				0.0054	0
	Third Floor	Asphalt	17 03		0	0				0.0054	0
	Fourth Floor	Asphalt	17 03		0	0				0.0054	0
	Lower Roof	Asphalt	17 03		617	0				0.0054	3
	Upper Roof	Asphalt	17 03			0				0.0054	0
aving Bricks	Lower Ground Floor	Bricks	17 01 02			0.135		0	1.9	Total	3 0
6 511045	Ground Floor	Bricks	17 01 02		***			20	1.9		38
					150	0.135					
	First Floor	Bricks	17 01 02		0	0.135		0	1.9		0
	Second Floor	Bricks	17 01 02		0	0.135		0	1.9		0
	Third Floor	Bricks	17 01 02		0	0.135		0	1.9		0
	Fourth Floor	Bricks	17 01 02		0	0.135		0	1.9		0
	Lower Roof	Bricks	17 01 02		0	0.135		0	1.9		0
	Upper Roof	Bricks	17 01 02	Total m2	0	0.135	Total M3	0 20	1.9	Total	0 38
		Bricks	17 01 02	rotarm2	242	0.14	iotai m13	34	1	70141	38 34
lockwork	Elevation 01				78	0.14		11	1		11
		Bricks	17 01 02					131	1		
ehind Cladding	Elevation 01		17 01 02 17 01 02		939	0.14		131			131
<mark>lockwork</mark> Jehind Cladding Jock	Elevation 01 Elevation 02	Bricks			939	0.14		0	1		131
ehind Cladding	Elevation 01 Elevation 02	Bricks Bricks	17 01 02		939						
ehind Cladding	Elevation 01 Elevation 02 Elevation 03 Elevation 05	Bricks Bricks Bricks Bricks	17 01 02 17 01 02 17 01 02			0.14 0.14		0	1		0
ehind Cladding	Elevation 01 Elevation 02 Elevation 03 Elevation 05 Elevation 06	Bricks Bricks Bricks Bricks Bricks	17 01 02 17 01 02 17 01 02 17 01 02 17 01 02		939	0.14 0.14 0.14		0 0 22	1 1 1		0 0 22
ehind Cladding	Elevation 01 Elevation 02 Elevation 03 Elevation 05	Bricks Bricks Bricks Bricks	17 01 02 17 01 02 17 01 02			0.14 0.14		0	1		0

			1		Ci	rcular Economy Oppor	rtunity	
m3]	Conversion factor Tonnes / m2]	Tonnes		1) Re-use exisiting assest	2) Recover Materials & Products on site or from another site		Recycle	Possiable Outlets (1-3)
1.9		7	1			0	0.00	
1.9		0				0	0.00	
1.9		38						
1.9		0						
1.9		0						
1.9		0						
1.9		13						
1.9		0					#REF!	
0.52	Total	58 4					#REF!	
0.52		1					#REF!	
0.52		14					#REF!	
0.52		0						
0.52		0						
0.52		4						
0.52		0					#REF!	
0.52		0					#REF! 0.00	
	Total	22					0.00	
0.02		0.05						
0.02		0.00					#REF! #REF!	
0.02		0.30						
0.02		0.00						
0.02		0.00					#REF!	
0.02		0.00					#REF!	
0.02		0.10					#REF!	
0.02		0.00						
	Total	0.5						
	0.05536	13					3.33	
	0.05536	4					0.00 67.48	
	0.05536	52					85.88	
		0					0.00 52.14	
		0	Tatal				-	
	0.05536	9	Total	L		0	#REF!	_

Component	Floor	Material	EWC	Length [Lin m] Heigl	ht [m]	Area [m2]	Depth [m]	Nr	Actual volume	Conversion factor [Tonnes / m3]	Weight per 1m2 / kg	Tonnes
inyl Flooring	Lower Ground Floor	Plastic	17 02 03	mj Heigi	nt (mj	Area [m2]	0.032	Nr	Actual Volume	[Tonnes / m3]	0.0026	0.2
	Ground Floor	Plastic	17 02 03			53	0.032		2		0.0026	0.1
	First Floor	Plastic	17 02 03			32	0.032		1		0.0026	0.1
	Second Floor	Plastic	17 02 03			50	0.032		2		0.0026	0.1
	Third Floor	Plastic	17 02 03			585	0.032		19		0.0026	1.5
	Fourth Floor	Plastic	17 02 03			230	0.032		7		0.0026	0.6
	Lower Roof	Plastic	17 02 03			0	0.032		0		0.0026	0.0
	Upper Roof	Plastic	17 02 03	T	tal	0	0.032	Total	0		0.0026 Total	0.0 3
ouncil Slab Tiles	Lower Ground Floor	Concrete	17 01 01	i.	ildi	419	0.05	Total	20.95	Weight per slab 0.041	Weight per m2 0.1107	46
00x600 - 50mm 7 slabs per m2	Ground Floor	Concrete	17 01 01		- 1	100	0.05		5	0.041	0.1107	11
7 31803 per 1112	First Floor	Concrete	17 01 01			0	0.05		0	0.041	0.1107	0
	Second Floor	Concrete	17 01 01			0	0.05		0	0.041	0.1107	0
	Third Floor	Concrete	17 01 01			0	0.05		0	0.041	0.1107	0
	Fourth Floor	Concrete	17 01 01			0	0.05		0	0.041	0.1107	0
	Lower Roof	Concrete	17 01 01			382	0.05		19.1	0.041	0.1107	42
	Upper Roof	Concrete	17 01 01			0	0.05		0	0.041	0.1107	42
uspended Ceilings	Lower Ground Floor	Light Steel	17 01 01	Tota	al m2	419	0.05	Total M3	20.95 16.2	0.041	0.1107 Total 0.005	100 3
ight Steel	Ground Floor	Light Steel	17 04 05				0.03		27.3		0.005	3
						909						5
	First Floor Second Floor	Light Steel	17 04 05 17 04 05			1398 936	0.03		41.9 28.1		0.005	7
		Light Steel										
	Third Floor	Light Steel	17 04 05			1197	0.03		35.9		0.005	6
	Fourth Floor	Light Steel	17 04 05			609	0.03		18.3		0.005	3
	Lower Roof	Light Steel	17 04 05			0	0.03		0.0		0.005	0
	Upper Roof	Light Steel	17 04 05			0	0.03		0.0		0.005 Total	0 28
aised Access Floor	Lower Ground Floor	Steel	17 04 05			675	0.031		20.925	Weight per panel 0.014	Weight per m2 0.0378	25.5
00x600x31 .7 panel m2	Ground Floor	Steel	17 04 05			1137	0.031		35.247	0.014	0.0378	43.0
	First Floor	Steel	17 04 05			1748	0.031		54.188	0.014	0.0378	66.1
	Second Floor	Steel	17 04 05			1441	0.031		44.671	0.014	0.0378	54.5
	Third Floor	Steel	17 04 05			1497	0.031		46.407	0.014	0.0378	56.6
	Fourth Floor	Steel	17 04 05			762	0.031		23.622	0.014	0.0378	28.8
	Lower Roof	Steel	17 04 05			0	0.031		0	0.4	0.002	0.0
	Upper Roof	Steel	17 04 05			0	0.03		0	0.4	0.002	0.0
/ooden Laminate	Lower Ground Floor	Wood	17 02 01			0	0.06		0		Total 0.0056	274 0.0
looring	Ground Floor	Wood	17 02 01			0	0.06		0		0.0056	0.0
	First Floor	Wood	17 02 01			0	0.06		0		0.0056	0.0
	Second Floor	Wood	17 02 01			280	0.06		16.8		0.0056	1.6
	Third Floor	Wood	17 02 01			0	0.06		0		0.0056	0.0
	Fourth Floor	Wood	17 02 01			0	0.06		0		0.0056	0.0
	Lower Roof	Wood	17 02 01			0	0.06		0		0.0056	0.0
	Upper Roof	Wood	17 02 01			0	0.06		0		0.0056	0.0
arpet Tiles	Lower Ground Floor	Carpet	04 02 22			911	0.03		27.33		Total 0.0033	2 3.0
	Ground Floor	Carpet	04 02 22			1189	0.03		35.67		0.0033	3.9
	First Floor	Carpet	04 02 22			1803	0.03		54.09		0.0033	5.9
	Second Floor	Carpet	04 02 22			1142	0.03		34.26		0.0033	3.8
	Third Floor	Carpet	04 02 22			997	0.03		29.91		0.0033	3.3
	Fourth Floor	Carpet	04 02 22			591	0.03		17.73		0.0033	2.0
	Lower Roof	Carpet	04 02 22			0	0.03		0		0.0033	0.0
	Upper Roof	Carpet	04 02 22			0	0.03		0		0.0033	0.0
eramic Tiles	Lower Ground Floor	Tiles & Ceramics	17 01 07			49	0.09		4.41		Total 0.02	22 1.0
	Ground Floor	Tiles & Ceramics	17 01 07			220	0.09		19.8		0.02	4.4
	First Floor	Tiles & Ceramics	17 01 07			79	0.09		7.11		0.02	1.6
	First Floor Second Floor	Tiles & Ceramics	17 01 07			46	0.09		4.14		0.02	1.6
	Third Floor	Tiles & Ceramics	17 01 07			46	0.09		4.14		0.02	0.9
	Encode Pl	Tilos 8 Com	17.01.07				0.00		4 1 4		0.02	0.0
	Fourth Floor	Tiles & Ceramics	17 01 07 17 01 07			46 0	0.09		4.14 0		0.02	0.9

	Circ	cular Economy Oppor	tunity	
1) Re-use exisiting assest	2) Recover Materials & Products on site or from another site		Recycle	Possiable Outlets (1-3)

				Length [Lin					Actual volume	Conversion factor		
Component	Floor	Material	EWC	m]	Height [m]	Area [m2]	Depth [m]	Nr	(M3)	[Tonnes / m3]	Weight per 1m2 / kg	Tonnes
RC Walls	Lower Ground Floor	Concrete	17 01 01	176	3.22	566.7	0.25		141.7	2.4		340
	Ground Floor	Concrete	17 01 01	61	3.22	196.4	0.25		49.1	2.4		118
	First Floor	Concrete	17 01 01	88	3.22	283.4 180.3	0.25		70.8	2.4		170 108
	Second Floor Third Floor	Concrete	17 01 01 17 01 01	56	3.22	180.3	0.25		45.1 45.1	2.4		108
	Fourth Floor	Concrete	17 01 01	56	3.22	180.3	0.25		45.1	2.4		108
	Lower Roof	Concrete	17 01 01				0.25		0.0	2.4		0
	Upper Roof	Concrete	17 01 01				0.25		0.0	2.4		0
				_				Total volume	396.9		Total	952.5
Blockwork	Lower Ground Floor	Blockwork	17 01 02	249	3.22	801.78	0.14		112.2	1		112
	Ground Floor First Floor	Blockwork	17 01 02 17 01 02	67 52	3.22	215.74	0.14		30.2 23.4	1		30 23
	Second Floor	Blockwork	17 01 02	56	3.22	180.32	0.14		25.2	1		25
	Third Floor	Blockwork	17 01 02	56	3.22	180.32	0.14		25.2	1		25
	Fourth Floor	Blockwork	17 01 02	56	3.22	180.32	0.14		25.2	1		25
	Lower Roof	Blockwork	17 01 02				0.14		0.0			0.0
	Upper Roof	Blockwork	17 01 02				0.14		0.0			0.0
Concrete	Lower Ground Floor	Concrete	17 01 01	0.63	3.22	0.4	0.63	No Collums 11	Per Collum 1	2.4	Total	242 34
Collums	Ground Floor	Concrete	17 01 01	0.63	3.22	0.4	0.63	22	1	2.4		67
	First Floor	Concrete	17 01 01	0.63	3.22	0.4	0.63	31	1	2.4		95
	Second Floor	Concrete	17 01 01	0.63	3.22	0.4	0.63	31	1	2.4		95
	Third Floor	Concrete	17 01 01	0.63	3.22	0.4	0.63	28	1	2.4		86
	Fourth Floor	Concrete	17 01 01	0.63	3.22	0.4	0.63	17	1	2.4		52
	Lower Roof	Concrete	17 01 01				0.2		0	2.4		0
	Upper Roof	Concrete	17 01 01				0.2		0	2.4	Total	0 429.4
Partitions	Lower Ground Floor	Gypsum	17 08 02	163	2.56	417.28	0.0125	Per sheet m3 0.036	5	145	Tonnes per sheet 0.0235	3
Stud/Plasterboard	Ground Floor	Gypsum	17 08 02	144	2.56	368.64	0.0125	0.036	5	128	0.0235	3
x1	First Floor	Gypsum	17 08 02	119	2.56	304.64	0.0125	0.036	4	106	0.0235	2
	Second Floor	Gypsum	17 08 02	86	2.56	220.16	0.0125	0.036	3	76	0.0235	2
	Third Floor	Gypsum	17 08 02	122	2.56	312.32	0.0125	0.036	4	108	0.0235	3
	Fourth Floor	Gypsum	17 08 02	79	2.56	202.24	0.0125	0.036	3	70	0.0235	2
	Lower Roof	Gypsum	17 08 02	0			0.0125	0.036	0	0	0.0235	0
	Upper Roof	Gypsum	17 08 02	0			0.0125	0.036 No Studs	0 Volume	0 M3 Coversion	0.0235 Total	0 15
Timber Studs Partitions	Lower Ground Floor	Timber	17 02 01	0.63	2.56		0.038	92	6	0.6		3
2.56 * 0.63 * 0.38 at 600mm centres	Ground Floor	Timber	17 02 01	0.63	2.56		0.038	81	5	0.6		3
1.78 stud per m	First Floor Second Floor	Timber	17 02 01	0.63			0.038	67	4	0.6		2
	Third Floor	Timber Timber	17 02 01 17 02 01	0.63	2.56		0.038	48	3	0.6		2 3
	Fourth Floor	Timber	17 02 01	0.63	2.56		0.038	44	3	0.6		2
	Lower Roof	Timber	17 02 01	0			0.038		0	0.6		0
	Upper Roof	Timber	17 02 01	0			0.038		0	0.6		0
			Total m2	2				Total M3	11		Total	15
Brickwork	Lower Ground Floor	Bricks	17 01 02	73	3.22	235	0.135		32	1.9		60
1.5 Bricks	Ground Floor	Bricks Bricks	17 01 02				0.135		0	1.9		0
	First Floor Second Floor	Bricks	17 01 02 17 01 02				0.135		0	1.9		0
	Second Floor Third Floor	Bricks	17 01 02				0.135		0	1.9		0
	Fourth Floor	Bricks	17 01 02				0.135		0	1.9		0
	Lower Roof	Bricks	17 01 02				0.135		0	1.9		0
	Upper Roof	Bricks	17 01 02				0.135		0	1.9		0
Partitions	Lower Ground Floor	Glass	Total m2 17 02 02	73 34	2.56	87.04	0.1	Total M3	32 8.7	2.5	Total	60 21.8
Glass	Ground Floor	Glass	17 02 02	55	2.56	140.8	0.1		14.1	2.5		35.2
	First Floor	Glass	17 02 02	57	2.56	145.92	0.1		14.6	2.5		36.5
	Second Floor	Glass	17 02 02	72	2.56	184.32	0.1		18.4	2.5		46.1
	Third Floor	Glass	17 02 02	86	2.56	220.16	0.1		22.0	2.5		55.0
	Fourth Floor	Glass	17 02 02	31	2.56	79.36	0.1		7.9	2.5		19.8
	Lower Roof	Glass	17 02 02	0			0.1		0.0	2.5		0.0

Per Colum	Total m3	Tonne
1.278018	14.058198	33.7396752
1.278018	28.116396	67.4793504
1.278018	39.618558	95.0845392
1.278018	39.618558	95.0845392
1.278018	35.784504	85.8828096
1.278018	21.726306	52.1431344
Total m3	179	

Area	Slabs [m2]	Suspended ceilings [m2]
Lower Ground Floor	512	
Ground Floor	520	
First Floor	398	
Second Floor	397	
Third Floor	398	
Lower Roof	405	
Upper Roof		
Totals	2630	0

					Pre-demolition	Audit						7			Circula
Element	Component	Material	EWC	Area [m2]	Depth [m]	Height [m]	Nr	Actual volume	Conversion factor [Tonnes / m3]	Conversion factor Tonnes / m2]	Tonnes		1) Re-use exisiting assest	2) Recover Materials & Products on site o from another site	
Floors	Lower Ground Floor Slab Lower Ground Floor Rebar	Concrete Steel	17 01 01 17 04 05		0.2				2.4	0.005	0 0		N/A N/A	N/A N/A	
	Ground Floor Slab Ground Floor Rebar	Concrete Steel	17 01 01 17 04 05		0.2				2.4	0.006	0 0		N/A N/A N/A	N/A N/A N/A	
	First Floor Slab First Floor Rebar	Concrete Steel	17 01 01 17 04 05		0.2				2.4	0.006	0 0		N/A N/A N/A	N/A N/A N/A	
	Second Floor Slab Second Floor Rebar	Concrete Steel	17 01 01 17 04 05		0.2				2.4	0.006	0 0		N/A N/A N/A	N/A N/A N/A	
	Third Floor Slab Third Floor Rebar	Concrete Steel	17 01 01 17 04 05		0.2				2.4	0.006	0 0	0	N/A N/A N/A	N/A N/A N/A	
	Roof Floor Slab Roof Floor Rebar	Concrete Steel	17 01 01 17 04 05		0.2				2.4	0.006	0 0	0	N/A N/A N/A	N/A N/A N/A	
			Total m2	0			Total Cubic m3	0		Frame Total Rebar Toral	0 0		N/A	N/A	
												Totals	0	0	

ular Economy	Opportunity	
are materials roducts for ard reuse	Recycle	Possiable Outlets (1-3)
		- Type 1 subbase if segregated
0	0.00	appropriately. - Recycled aggregate in concrete
		 Type 1 subbase if segregated appropriately. Recycled aggregate in
0	0.00 #REF!	concrete
0	0.00	 Type 1 subbase if segregated appropriately. Recycled aggregate in concrete
0	0.00	 Type 1 subbase if segregated appropriately. Recycled aggregate in concrete
0	0.00	 Type 1 subbase if segregated appropriately. Recycled aggregate in concrete
0	0.00 0.00	 Type 1 subbase if segregated appropriately. Recycled aggregate in concrete
0	#REF!	

Length [Lin Conversion factor [Tonnes Floor Material EWC m] Height [m] Area [m2] Depth [m] Nr Actual volume / m3] Weight per 1m2 / kg Tonnes Component Vinyl Flooring Lower Ground Floor Plastic 17 02 03 0 0.032 0.0 0.0026 0 0 0.032 0.0 0 Ground Floor Plastic 17 02 03 0.0026 First Floor 17 02 03 103 0.032 3.1 0.0026 Plastic 1 145 Second Floor Plastic 17 02 03 0.032 4.4 0.0026 1 Third Floor 17 02 03 87 0.032 0.0026 0 Plastic 2.6 Roof Plastic 17 02 03 0 0.032 0.0 0.0026 0 Total Total Total 2 Suspended Ceilings Lower Ground Floor 17 04 05 0.03 Light Steel 0.005 Light Steel Ground Floor Light Steel 17 04 05 0.03 0.005 First Floor Light Steel 17 04 05 258 0.03 0.005 1 Second Floor 0.03 Light Steel 17 04 05 0.005 Third Floor Light Steel 17 04 05 0.03 0.005 Roof Light Steel 17 04 05 0.03 0.005 Total Suspended Ceilings Lower Ground Floor Light Steel 17 04 05 0.03 0.005 Mineral Fibre Ground Floor Light Steel 17 04 05 0.03 0.005 First Floor 17 04 05 0.03 0.005 Light Steel 225 13.5 Second Floor Light Steel 17 04 05 0.06 0.0056 1 Third Floor Light Steel 17 04 05 0.03 0.005 Roof 17 04 05 0.03 0.005 Light Steel Total **Carpet Tiles** 264 0.03 7.92 Lower Ground Floor 04 02 22 0.0033 0.9 Carpet Ground Floor Carpet 04 02 22 337 0.03 10.11 0.0033 1.1 First Floor 04 02 22 176 0.03 5.28 0.0033 0.6 Carpet Second Floor 04 02 22 159 0.03 4.77 0.0033 0.5 Carpet Third Floor 133 Carpet 04 02 22 0.03 3.99 0.0033 0.4 0 Roof Carpet 04 02 22 0.03 0 0.0033 0.0 Total 4 32 **Ceramic Tiles** Lower Ground Floor Tiles & Ceramics 17 01 07 0.09 2.88 0.02 0.6 Ground Floor Tiles & Ceramics 17 01 07 0 0.09 0 0.02 0.0 11 0.99 First Floor 0.09 0.02 0.2 Tiles & Ceramics 17 01 07 9 0.09 Second Floor Tiles & Ceramics 17 01 07 0.81 0.02 0.2 Third Floor Tiles & Ceramics 17 01 07 7 0.09 0.63 0.02 0.1 Roof Tiles & Ceramics 17 01 07 0 0.09 0 0.02 0.0 Total 1 Per sheet m3 Tonnes per sheet Weight per panel Weight per m2 132 0.031 **Raised Access Floor** Lower Ground Floor Steel 17 04 05 4.092 0.014 0.0378 5.0 600x600x31 136 2.7 panel m2 Ground Floor Steel 17 04 05 0.031 4.216 0.014 0.0378 5.1 First Floor Steel 17 04 05 258 0.031 7.998 0.014 0.0378 9.8 Second Floor 225 0.031 6.975 0.0378 8.5 Steel 17 04 05 0.014 219 Third Floor Steel 17 04 05 0.031 6.789 0.014 0.0378 8.3

2) Reco Materia 1) Re-use Product or from cisiting site

ssest

Total

37

Circ	cular Economy Oppor	tunity	
ver Is & s on site another	3) Share materials or products for onward reuse	Recycle	Possiable Outlets
			(1-3)

Component	Floor	Material	EWC	Length [Lin m]	Height [m]	Area [m2]	Depth [m]	Nr	Actual volume (M3)	Conversion factor [Tonnes / m3]	Weight per 1m2 / kg	Tonnes
								Per Sheet (m3)			Tonnes per sheet	
Partitions Stud/Plasterboard	Lower Ground Floor	Gypsum	17 08 02	39	2.56	99.84	0.0125	0.036	1.2	34.7	0.0235	2.3
	Ground Floor	Gypsum	17 08 02	33	2.56	84.48	0.0125	0.036	1.1	29.3	0.0235	0.7
x1	First Floor	Gypsum	17 08 02	39	2.56	99.84	0.0125	0.036	1.2	34.7	0.0235	0.8
	Second Floor	Gypsum	17 08 02	44	2.56	112.64	0.0125	0.036	1.4	39.1	0.0235	0.9
	Third Floor	Gypsum	17 08 02	45	2.56	115.2	0.0125	0.036	1.4	40.0	0.0235	0.9
	Roof	Gypsum	17 08 02	0	2.56	0	0.0125	0.036	0.0	0.0	0.0235	0.0
Timber Stud	Lower Ground Floor	Timber	17 02 01	0.63	2.56	1.6128	0.038	No Studs 22	1.3	0.6	Total	6 1.9
	Ground Floor	Timber	17 02 01	0.63	2.56	1.6128	0.038	19	1.1	0.6		1.7
Partitions 2.56 * 0.63 * 0.38 at 600mm centres	First Floor	Timber	17 02 01	0.63	2.56	1.6128	0.038	22	1.3	0.6		1.9
1.78 stud per m	Second Floor	Timber	17 02 01	0.63	2.56	1.6128	0.038	25	1.5	0.6		2.1
- -	Third Floor	Timber	17 02 01	0.63	2.56	1.6128	0.038	25	1.5	0.6		2.1
	Roof	Timber	17 02 01	0	2.56	0	0.038		0.0			0.0
											Total	10
Partitions Glass	Lower Ground Floor	Glass	17 02 02	0	2.56	0	0.1		0.0	2.5		0.0
	Ground Floor	Glass	17 02 02	0	2.56	0	0.1		0.0	2.5		0.0
	First Floor	Glass	17 02 02	12	2.56	30.72	0.1		3.1	2.5		7.7
	Second Floor	Glass	17 02 02	17	2.56	43.52	0.1		4.4	2.5		10.9
	Third Floor	Glass	17 02 02	28	2.56	71.68	0.1		7.2	2.5		17.9
	Roof	Glass	17 02 02	0	2.56	0	0.1		0.0	2.5		0.0
											Total	36.5

Total

1) Re exisi asse:

Circular Economy Opportunity									
-use ing t	2) Recover Materials & Products on site or from another site	3) Share materials or products for onward reuse	Recycle	Possiable Outlets (1-3)					
		0	0.00						

Component	Floor	Material	EWC	Length [Lin m]	Height [m]	Area [m2]	Depth [m]	Nr	Con Actual volume (M3)	oversion factor [Tor / m3]	nnes Weight per 1m2 / kg	Tonnes
RC Walls	Lower Ground Floor	Concrete	17 01 01				0.225		0.0	2.4		0
	Ground Floor	Concrete	17 01 01				0.225		0.0	2.4		0
	First Floor	Concrete	17 01 01				0.225		0.0	2.4		0
	Second Floor	Concrete	17 01 01				0.225		0.0	2.4		0
	Third Floor	Concrete	17 01 01				0.225		0.0	2.4		0
	Roof	Concrete	17 01 01				0.225		0.0	2.4		0
Blockwork	Lower Ground Floor	Blockwork	17 01 02			110	0.1		11.0	1	Total	0.0 11
	Ground Floor	Blockwork	17 01 02			150	0.1		15.0	1		15
	First Floor	Blockwork	17 01 02			52	0.1		5.2	1		5.2
	Second Floor	Blockwork	17 01 02			73	0.1		7.3	1		7.3
	Third Floor	Blockwork	17 01 02			66	0.1		6.6	1		6.6
	Roof	Blockwork	17 01 02				0.1		0.0	1		0
		D : 1						Per Sheet	-		Total	45.1
Brickwork	Lower Ground Floor	Bricks	17 01 02			52	0.103		5	1.9		10
	Ground Floor	Bricks	17 01 02			60	0.103		6	1.9		12
	First Floor	Bricks	17 01 02			31	0.103		3	1.9		6
	Second Floor	Bricks	17 01 02			37	0.103		4	1.9		7
	Third Floor	Bricks	17 01 02			27	0.103		3	1.9		5
	Roof	Bricks	17 01 02			0	0.103		0	1.9		0
											Total	40.5
Styrofoam Insulation Polystyrene	Lower Ground Floor	Insulation				59	0.025		1	0.04		0.1
	Ground Floor	Insulation				60	0.025		2	0.04		0.1
	First Floor	Insulation				31	0.025		1	0.04		0.03
	Second Floor	Insulation				37	0.025		1	0.04		0.04
	Third Floor	Insulation				27	0.025		1	0.04		0.03
	Roof	Insulation				0	0.025		0	0.04		0.0
											Total	0.2

1) Re-u

Circular Economy Opportunity									
e	2) Recover Materials & Products on site	3) Share materials							
:	or from another site	or products for onward reuse	Recycle	Possiable Outlets (1-3)					
				1					
		0	0.00						

						Pre-demolitio	on Audit					
Element	Component	Material	EWC	Length [Lin m]	Height [m]	Area [m2]	Depth [m]	Nr	Actual volume	Conversion factor [Tonnes / m3]	Conversion factor Tonnes / m2]	Tonnes
Brickwork	North Elevation	Bricks	17 01 02				0.135		0	1.9		0
	East Elevation	Bricks	17 01 02			53	0.135		7	1.9		14
	South Evevation	Bricks	17 01 02			173	0.135		23	1.9		44
	Vault Demolition	Bricks	17 01 02			23	0.135		3	1.9		6
					Total m2	249		Total M3	34		Total	64
Blockwork	North Elevation	Blockwork	17 01 02				0.1		0.0	1		0
	East Elevation	Blockwork	17 01 02		l	53	0.1		5.3	1		5.3
	South Evevation	Blockwork	17 01 02		l	173	0.1		17.3	1		17.3
	Vault Demolition	Blockwork	17 01 02			0	0.1		0.0	1		0
Glazing	North Elevation	Glass	17 02 02			4	0.05	Per Sheet	0	0.52	Total	23 0
Giazing												
	East Elevation	Glass	17 02 02		I	0	0.05		0	0.52		0
	South Evevation	Glass	17 02 02			44	0.05		2	0.52		1
	South Evevation Vault Demolition	Glass Glass	17 02 02 17 02 02			44 0	0.05 0.05		2 0	0.52		1
Inculation	Vault Demolition	Glass	17 02 02		Total m2	0	0.05	Total M3		0.52	Total	
Insulation Façade	Vault Demolition North Elevation	Glass Mineral	17 02 02		Total m2	0 48 0	0.05	Total M3	0 2	0.52	Total	0
	Vault Demolition North Elevation East Elevation	Glass Mineral Mineral	17 02 02 17 06 04 17 06 04		Total m2	0 48 0 53	0.05	Total M3	0 2 1	0.52 0.02 0.02	Total	0 1 0.03
	Vault Demolition North Elevation East Elevation South Evevation	Glass Mineral Mineral Mineral	17 02 02 17 06 04 17 06 04 17 06 04		Total m2	0 48 0 53 173	0.05	Total M3	0 2 1 4	0.52 0.02 0.02 0.02	Total	0 1 0.03 0.09
	Vault Demolition North Elevation East Elevation	Glass Mineral Mineral	17 02 02 17 06 04 17 06 04		Total m2	0 48 0 53	0.05	Total M3	0 2 1	0.52 0.02 0.02	Total	0 1 0.03

Cir	cular Economy Oppor	tunity	
2) Recover Materials & Products on site or from another site	· · · ·	Recycle	Possiable Outlets (1-3)
	_		
	0	0.00 13.59	
		13.35	
		#REF!	
		#REF!	
		#REF!	
		0.00	
		#REF!	
		#REF!	
		#REF!	
		#REF!	
		#REF!	
		0.11	
		0.00	
		11.74	
		6.07	
		0.00	
		7.24	
	0	#REF!	
	v		

New City Court – Pre-demolition Audit

APPENDIX 4 GLA Circular Economy Recycling and Waste Reporting

1 Appendix- GLA Circular Economy Recycling and Waste Reporting Template

Please complete the GLA Appendix D template:

Category	Total Estimate		Of Which			Source of Information
				% not reused or r	ecycled max 5%	
Demolition Waste	t/m2 Gross Internal (GIA) Tonnes	% reused or recycled onsite (Subject to methodology of construction/demolition)	% reused or recycled offsite	% to landfill	% to other management (incineration)	Paragraph
					(Subject to methodology of construction/demolition	
Concrete Frame & Walls	10,215	95% >	95% >	09	6	See paragraph; 5.2.5, 6.3.6
Concrete 17 01 01				0%	< 5%	
Rebar Steel	405		99% >	09	6	See paragraph; 6.3.10
17 04 05	405		5576 2	0%	0%	See paragraph, 0.5.10
Façade Windows/Partitions	22		95% >	09	6	
Glazing 23 17 02 02		55787	0%	< 5%	See paragraph; 5.4.5, 6.3.16	
rickwork Wall/Façade	264	25%	95% >	09	6	
Brickwork 17 01 02	261	261 95% >		0%	< 5%	See paragraph; 5.4.3
Stud Partition				09		
Gypsum 17 08 02	42		95% >	0%	< 5%	See paragraph; 5.3.17, 5.3.18
Mineral			2794	09	6	
Façade Insulation 17 06 02	0.8		95% >	0%	< 5%	See paragraph; 6.3.9
Blockwork Walls				09	6	
Blockwork 17 01 02	508		95% >	0%	< 5%	See paragraph; 5.2.6
Carpet Tiles	25		2027	09		
Carpet 26 04 02 22	26		99% >	0%	0%	See paragraph; 5.3.7, 5.3.8, 6.3.8

Category	Total Estimate		Of Which			Source of Information
				% not reused or r	ecycled max 5%	
Demolition Waste	t/m2 Gross Internal (GIA) Tonnes	% reused or recycled onsite (Subject to methodology of construction/demolition)	% reused or recycled offsite	% to landfill	% to other management (incineration)	Paragraph
					(Subject to methodology of construction/demolition	
Vinyl Flooring Floor Coverings	5		95% >	0%		See paragraph; 5.3.28,
04 02 22	C		~ ~ ~ 2 2	0%	< 5%	5.3.29, 6.3.12
Timber Studs				0%	2	
Timber 17 02 01	25		99% >	0%	0%	See paragraph; 6.3.11
Roofing				0%	2	
Asphalt 33 17 03		95% >	0%	< 5%	See paragraph; 6.3.14	
Suspended Ceilings			0%		, ,	See november 5 2 11
Steel 17 04 05	29		99% >	0%	0%	See paragraph; 5.3.11
Internal Partitions				0%	See paragraph; 5.3.30,	
Glazing 17 02 02	232		95% >	0%	< 5%	5.3.31, 6.3.17
Wooden Laminate			05%	0%	5	C
Flooring 17 02 01	2		95% >	0%	< 5%	See paragraph; 6.3.13
Raised Access Flooring	244		0001/	0%	5	See paragraph; 5.3.3,
Steel 17 04 05	311		99% >	0%	0%	6.3.15
Lead Roofing				0%		
Lead 17 04 03	1		99% >	0%	0%	See paragraph; 6.3.19

Category	Total Estimate		Of Which				
				% not reused or re			
Demolition Waste	t/m2 Gross Internal (GIA) Tonnes	% reused or recycled onsite (Subject to methodology of construction/demolition) % reused or recycled offsite		% to landfill	% to other management (incineration) (Subject to methodology of construction/demolition	Paragraph	
Aluminium Cladding				0%			
Aluminium 17 04 02	78		99%	0%	0%	See paragraph; 6.3.20	
Paving Slabs	100		99%	0%		See percerents 5 4 9 5 2 5	
Concrete 17 01 01	100	100		0%	0%	See paragraph; 5.4.8, 5.2.5	

Please note the >5% margin for 'other management' is allowed for potential contaminated non-hazardous waste.

New City Court – Pre-demolition Audit

6.6 Appendix 6 – Delivery, Servicing and Waste Management Plan

NEW CITY COURT

Delivery, Servicing & Waste Management Plan TPP

Contents

1	Introduction1
2	Policy Context4
3	Aims and Objectives12
4	Proposed Delivery and Servicing Arrangements
5	Delivery and Servicing Trips15
6	Impact of Servicing Trips20
7	Vehicle Routes
8	Waste Strategy
9	Delivery and Servicing Plan Measures26
10	Monitoring and Enforcement

Tables

Table 2.1 – SDG area-wide freight site visit results 7	
Table 5.1 – Existing site servicing (no. of vehicles)15	

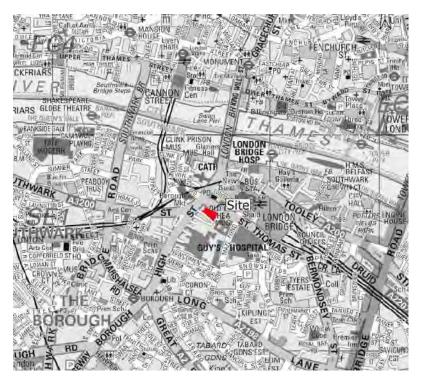
Figures

Figure 1 Site Location

Appendices

- A Swept path analysis of service area
- B Service vehicle routeing
- C Waste generation calculations

1 INTRODUCTION


1.1 Background and context

1.1.1 Transport Planning Practice (TPP) has been appointed to provide transport advice in relation to the proposed redevelopment at New City Court, 4-26 St Thomas Street, London, SE1 9RS (the site) within the London Borough of Southwark (LBS).

1.2 Existing site

- 1.2.1 The site is located in the London Bridge area covering an area of approximately 0.36 hectares (ha). The site is bounded by St Thomas Street to the north; shops on Borough High Street (A3) to the west; King's Head Yard to the south; and Guy's Hospital buildings to the east. It is currently almost entirely occupied by:
 - 1980s office building to rear (New City Court);
 - 1980s four-storey office building fronting St Thomas Street;
 - Four storey building with retained 19th Century façade (Keats House);
 - Early 19th Century Grade II listed Georgian terrace.
- 1.2.2 A site location plan is included in Figure 1.

Figure 1 – Site location plan

30973/D30b July 2021

1.3 Proposed development

- 1.3.1 The proposals are for Redevelopment to include demolition of the 1980s office buildings and erection of a 26-storey building (plus mezzanine and two basement levels), restoration and refurbishment of the listed terrace (nos. 4-16 St Thomas Street), and redevelopment of Keats House (nos. 24-26 St Thomas Street) with removal, relocation and reinstatement of the historic façade office on a proposed building, to provide floorspace, flexible restaurant/café floorspace and a public rooftop office/retail floorspace, garden, associated public realm and highways improvements, provision for a new access to the Borough High Street entrance to the Underground Station, cycling parking, car parking, service, refuse and plant areas, and all ancillary or associated works.
- 1.3.2 The comprehensive redevelopment of the site to include the demolition of the existing 1980s buildings and alterations, sympathetic restoration of listed Georgian terrace buildings along St Thomas Street, and reconstruction of Keats House with retention of existing façade, to provide the following:
 - Delivery of a highly sustainable 26-storey building (plus mezzanine and two basement levels), providing 44,159 sqm (GIA) of highquality office floorspace (Class E);
 - Introduction of 328 sqm (GIA) of flexible office/retail floorspace (Class E) at ground floor level of proposed office building, activating the proposed public realm;
 - Provision of 4,889 sqm (GIA) of affordable workspace (Class E) within the Georgian terrace buildings, Keats House and levels 1 and 2 of the proposed office building, representing 10% of the overall office provision;
 - Delivery of publicly accessible rooftop garden with high-quality landscaping and a complementary café and restaurant providing 414 sqm (GIA) food/drink floorspace (Class E);

1.4 Report purpose

1.4.1 A Draft Delivery and Service Management Plan (DSMP) is used to inform the local and regional authorities of the intent of the applicant in managing delivery

30973/D30b July 2021

and servicing trips to and from the development in order to minimise the impact of these trips on the surrounding local highway network.

1.4.2 This report has been prepared to set out the proposed delivery and servicing arrangements and the measures which will be in place to ensure that deliveries are undertaken safety and efficiently. This report will be further reviewed and a final version will be submitted for approval post consent.

1.5 Report Structure

- 1.5.1 This report is structured as follows:
 - Chapter 2: Policy context summarises planning policies and guidance regarding deliveries and servicing.
 - Chapter 3: Aims and objectives sets out the objectives of this DSMP.
 - Chapter 4: Proposed delivery and servicing arrangements outlines the design proposals for delivery and servicing activities within the development.
 - Chapter 5: Delivery and servicing trips outlines the number of trips associated with deliveries and servicing measures activities anticipated to be generated by the proposals.
 - Chapter 6: Impact of servicing trips assesses the impact of the predicted servicing movements.
 - Chapter 7: Vehicle routes describes the key routes expected to be used by delivery and servicing vehicles to arrive to / depart from the site.
 - Chapter 8: Waste strategy describes the waste storage arrangements at the proposed development.
 - Chapter 9: Delivery and servicing plan measures describes the measures of mitigation that will be implemented to minimise the impact of deliveries and servicing.
 - Chapter 10: Monitoring and enforcement provides a framework for monitoring the DSMP and how this will be enforced.

2 POLICY CONTEXT

2.1 Introduction

2.1.1 This chapter provides a summary of the planning policies and guidance on deliveries and servicing.

2.2 Revised National Planning Policy Framework, February 2019 (NPPF)

2.2.1 Paragraph 110 of the NPPF states that applications for development should:

'allow for the efficient delivery of goods, and access by service and emergency vehicles.'

2.3 London Plan, March 2021

- 2.3.1 The London Plan 2021 was adopted in March 2021 and most transport policies in the London Plan 2021 help reinforce those implemented in the previous London Plan. The London Plan 2021 covers the period from 2019 to 2041, providing a longer-term view of London's development to inform decision making.
- 2.3.2 Policy T7 on Freight and Servicing states that:

'G -Development proposals should facilitate safe, clean, and efficient deliveries and servicing. Provision of adequate space for servicing, storage and deliveries should be made off-street, with on-street loading bays only used where this is not possible. Construction Logistics Plans and Delivery and Servicing Plans will be required and should be developed in accordance with Transport for London guidance and in a way which reflects the scale and complexities of developments.

H -Developments should be designed and managed so that deliveries can be received outside of peak hours and in the evening or night time. Appropriate facilities are required to minimise additional freight trips arising from missed deliveries and thus facilitate efficient online retailing.'

2.4 Mayor's Transport Strategy, March 2018

2.4.1 The Mayor's Transport Strategy sets out the Mayor's policies and proposals to reshape transport in London over the next 25 years. The strategy was published in March 2018.

- 2.4.2 The strategy recognises that London's continued success relies on safe, reliable, sustainable and efficient goods delivery and servicing. Improving the efficiency of deliveries shifting them to alternative times of the day when the network can better accommodate them, and maximising deliveries by sustainable modes is considered essential to address congestion.
- 2.4.3 Proposal 15 states that the Mayor, through TfL and the boroughs, will work with business and the freight industry to improve the efficiency and safety of freight and servicing in London by:
 - *`a)* Developing tailored and targeted approaches to address the unique challenges faced by the individual sectors such as food and construction deliveries.
 - *b)* Planning a strategic consolidation and distribution network, including a review of funding requirements, and protecting industrial land through the London Plan.
 - c) Encouraging London's businesses, starting with Business Improvement Districts, to work together to use their procurement power to reduce or re-time their deliveries and servicing trips to avoid traffic congestion.
 - d) Ensuring that all London is within a 30-minute drive of a construction consolidation centre and encouraging their use through Construction Logistics Plans and the planning process.
 - e) Encouraging businesses in central London to ban personal deliveries, and extending the network of collection points in order to reduce the overall number of work place personal deliveries.
 - *f)* Working with Business Improvement Districts to promote waste and recycling consolidation, using the waste consolidation toolkit.
 - g) Developing a 'London lorry standard' to simplify the regulatory environment for HGVs operating in London.'
- 2.4.4 Furthermore, the strategy states that new developments will be expected to be designed to encourage efficient, safe and low-emission delivery and servicing

trips. Planning permissions should secure delivery and servicing plans that support off-peak (including night-time) deliveries.

2.4.5 Proposal 81 states that the Mayor, through TfL and the boroughs, will seek to ensure that delivery and servicing plans facilitate off-peak deliveries using quiet technology, and the use of more sustainable modes of delivery, including cargo bikes and electric vehicles where practicable.

2.5 Delivery and Servicing Plan guidance, December 2020

- 2.5.1 Following the adoption of the new Mayor's Transport Strategy in 2018, this document replaces the previous Guidance which was prepared for a past Mayor's Transport Strategy (MTS) in London. It provides links to tools and templates to help prepare a DSP.
- 2.5.2 The specific measures within the DSP should include:
 - Safe The DSP must show how potential conflicts with pedestrians and cyclists have been removed or managed.;
 - Clean Minimise the adverse environmental impact of freight transport and servicing in London;
 - Efficient Minimise the impact of congestion on the carriage of goods and provision of servicing; and

2.6 London Bridge Delivery and Servicing Study, July 2017

- 2.6.1 LBS and Team London Bridge (TLB) commissioned Steer Davies Gleave (SDG) to review the current delivery and servicing regime in the London Bridge Business Improvement District (BID) to reduce the negative impact of freight operations.
- 2.6.2 The site is located within the BID area as shown below.

Inset 1 – London Bridge Business Improvement District (BID) Area

2.6.3 The results of the area-wide freight site visits (August / September 2016) are reproduced below.

Table 2.1 – SDG area-wide freight site visit i	results
--	---------

Location	Freight activity observed
BID-wide	 Majority of roads are TfL Red Routes which restricts loading and unloading to certain time periods and maximum waiting time limits Several courier delivery companies, food delivery companies and maintenance vehicles noted (early morning)
Crucifix Lane, Bermondsey Street, St Thomas Street (east)	 Very limited parking available at all times due to temporary road markings and barriers
St Thomas Street	 Delivery vehicles parked on Red Routes (newspaper delivery, catering, cleaning / hygiene products) (06:00 – 06:30) Delivery vehicles queueing to access The Shard loading bay (lunchtime) – see Figure 3.1
London Bridge Hospital	 Two large vans unloading off-street, including Bidvest food delivery (05:30 – 06:00) Delivery vehicles parked illegally on double yellow lines (lunchtime)
Tooley Street (adj. to St Olaf Stairs)	Four deliveries on short section of road causing congestion (lunchtime)
Battle Bridge Lane	• Milk delivery (05:30 – 06:00)
More London Estate goods entrance	 Two lorries entering goods area – waste collection and office furniture delivery (05:30 – 06:00)
Collingwood Street (KCL Guy's Campus)	 Significant number of maintenance / tradesman delivery vans parked – likely to be undertaking refurbishment works prior to start of 2016/17 academic year (lunchtime)
Guy's Hospital	 General recycling collection and gas delivery lorries parked off-street (06:00 - 06:30)
Newcomen Street	 Very congested with delivery vans (lunchtime)
Borough High Street	 High volume of goods vehicles at the junction with Southwark Street but no congestion (05:30 – 07:00) Very congested with numerous delivery vehicles parked on both sides of carriageway (lunchtime)
Weston Street	 On-street parking is 90% full – attributed mostly to delivery vehicles occupying bays (06:00 – 06:30) – see Figure 3.2

- 2.6.4 A number of recommendations have been made in the report to be considered further by TLB and LBS to reduce, re-time and reroute deliveries. These include the following:
 - Promotion of alternative locations for personal deliveries to staff 6 out of 7 businesses monitored allow employees to receive such parcels at the workplace, comprising up to 60% of all post room items for some businesses. Eliminating these deliveries from offices in the BID would significantly reduce number of courier trips in the London Bridge area and free up staff time.
 - TLB (with support of LBS) to investigate the introduction of a 'London Bridge Buyer's Club' to promote a limited number of recommended suppliers within common goods / service categories.
 - TLB to establish a quarterly 'Freight Forum' as part of their Responsible Business initiative to provide the platform for BID businesses to discuss constraints / opportunities related to sustainable delivery and servicing methods (similar format to the final stakeholder workshop).
 - LBS's Development Control team and TfL to set targets for new major developments brought forward in the BID as part of the planning process on mode share for freight activity by sustainable modes (e.g. 20% within first year of occupation). Ensure developments comply with LBS's forthcoming Kerbside Strategy.
 - LBS and TfL to require new developments of a certain size brought forward in the BID to develop an efficient booking system for delivery areas as part of the planning process (likely to be part of DSMPs).
 - TfL Freight team to issue data on delivery routes to avoid where possible through the BID to enable local businesses to develop appropriate strategies.

2.7 Southwark's Draft Kerbside Strategy

2.7.1 The public consultation on LBS's Draft Kerbside Strategy ran from February to April 2017.

- 2.7.2 The proposed strategy would introduce the following new policies to address unsafe parking and parking stress on residential streets and town centres:
 - KSS Policy 1: Allocate kerbside space in accordance with Southwark's street wise approach.
 - KSS Policy 2: Prioritise kerbside space for walking and cycling.
 - KSS Policy 3: Implement parking controls based on an-evidence led approach.
 - KSS Policy 4: Review parking in town centres.
 - KSS Policy 5: Require safer, robust delivery, servicing and waste management.
 - KSS Policy 6: Implement more green infrastructure.
 - KSS Policy 7: Expand the shared mobility network.
 - KSS Policy 8: Adapt our kerbside to meet future needs.
- 2.7.3 On KSS Policy 5, the draft strategy requires all new developments to provide a robust delivery, servicing and waste management framework which will include:
 - Details of on-site deliveries and servicing facilities and management.
 - Expected off-peak deliveries and servicing hours, with built in resilience in the event of unforeseen delays, e.g. financial penalties for suppliers.
 - Re-timing freight trips to out-of hours wherever practicable.
 - Robust booking facilities to avoid over-spill onto the public highway.
 - Maximising opportunities to consolidate trips.
 - Monitoring once the development is fully operational to show a progressive reduction of the amount of trips to the site year-on-year from the initial baseline year.

- A commitment that contractors are fully signed up to the TfL Freight Operator Recognition Scheme (FORS).
- 2.7.4 The draft strategy would also require all new developments to provide on-site space to carry out all servicing and delivery activity. Southwark will refuse all requests for on-street servicing for major developments.

2.8 Draft New Southwark Plan Submission Version – Proposed Changes (August 2020)

2.8.1 Policy P49 'Highway Impact' states that developments should minimise the demand for private car and ensure safe and efficient operation of the local road network, the bus network and the Transport for London (TfL) road network. Developments should also ensure safe and efficient delivery and servicing that minimise the number of vehicle journeys.

2.9 T-Charge, October 2017

- 2.9.1 Since October 2017, cars, vans, minibuses, buses, coaches and heavy goods vehicles (HGVs) in central London need to meet minimum exhaust emission standards, or pay a daily £10 Emissions Surcharge (also known as the Toxicity Charge, or T-Charge).
- 2.9.2 The T-Charge applies to the same area as the Congestion Charge. The T-Charge will be in addition to the Congestion Charge and the LEZ tariff if applicable. The minimum emissions standards are Euro 4/IV for both petrol and diesel vehicles and Euro 3 for motorised tricycles and quadricycles.

2.10 Low Emissions Zone, February 2008

- 2.10.1 The Low Emission Zone (LEZ) operates to encourage the most polluting heavy diesel vehicles driving in London to become cleaner. The LEZ covers most of Greater London and is in operation 24 hours a day, every day of the year.
- 2.10.2 The LEZ aims to improve air quality in the city by setting and enforcing new emissions standards for vehicles and deterring the use of the most polluting heavy vehicles by freight operators. Cars and motorcycles are not affected.
- 2.10.3 If measures cannot be taken to meet LEZ standards, there is a daily charge of £200 applicable for HGV's, coaches and buses; and £100 for large vans, pickups and minibuses.

- 2.10.4 The LEZ is enforced through fixed and mobile cameras which read vehicle registration number plates as vehicles are driven within the LEZ and check them against a database of vehicles. The database contains vehicles which meet the LEZ emissions standards and are therefore exempt from charges, are registered for a 100% discount or have paid the LEZ daily charge. Vehicles not within the database will need to pay by midnight the next working day or will be issued a penalty charge notice.
- 2.10.5 Even stronger standards are being introduced for the LEZ from 26th October 2020.

2.11 Ultra Low Emission Zone, April 2019

- 2.11.1 The Ultra Low Emission Zone (ULEZ) will come into force on 8th April 2019 and will operate 24 hours a day, every day of the year, within the same area as the current Congestion Charging Zone (CCZ).
- 2.11.2 The ULEZ is an area within which all cars, motorcycles, vans, minibuses, buses, coaches and heavy goods vehicles (HGVs) will need to meet exhaust emission standards (ULEZ standards) or pay a daily charge to travel.
- 2.11.3 The introduction of the ULEZ is intended to reduce exhaust emissions of NO2 and particulate matter PM10 and PM2.5, making central London a more pleasant place to live, work and visit.

3 AIMS AND OBJECTIVES

3.1 Introduction

3.1.1 This chapter sets out the overarching objectives of this DSMP for the proposed development.

3.2 Objectives

- 3.2.1 The aim of this DSMP is to commit to support a sustainable and well managed development with regards to deliveries and servicing, with minimal disruption to the local highway network.
- 3.2.2 This DSMP will therefore seek to achieve the following objectives:
 - Demonstrate that goods and services can be delivered, and waste removed, in a safe, efficient and environmentally-friendly way;
 - Identify deliveries that could be reduced, re-timed or even consolidated, particularly during busy periods;
 - Improve the reliability of deliveries to the site;
 - Reduce the operating costs of building occupants and freight companies; and
 - Reduce the impact of freight activity on local residents and the environment.

4 PROPOSED DELIVERY AND SERVICING ARRANGEMENTS

4.1 Introduction

4.1.1 This chapter sets out the proposed arrangements of deliveries and servicing to the proposed development, including the design of the scheme and the expected level of vehicle trip generation.

4.2 Site layout

4.2.1 The site is bounded by St Thomas Street to the north, Borough High Street to the west, Kings Head Yard to the south and Guy's Hospital to the east. Borough High Street and St Thomas Street are part of the Transport for London Road Network (TLRN), also known as a Red Route.

Inset 2 – Proposed Site layout

4.3 Servicing arrangements

4.3.1 The proposed arrangement is for servicing is to take place from the development's service yard away from the public highway.

30973/D30b July 2021

- 4.3.2 Service vehicles will park in the service bays and the goods will be trollied to the offices via the B1 level, except for the Georgian Terrace, where the goods will be transported at ground level.
- 4.3.3 Motorcycle couriers will also stop on St Thomas Street to deliver/collect packages from the development.

4.4 Swept path analysis

4.4.1 Swept path analysis has been undertaken for the proposed access and servicing arrangement and are included in drawing 30848/AC/076 rev A, included in Appendix A. This drawing shows the swept path analysis for both a 10.2m refuse vehicle and a 10m HGV accessing the turntable within the service area, and LGVs and cars accessing their respective bays.

5 DELIVERY AND SERVICING TRIPS

5.1.1 This Chapter sets out the proposed servicing trip generation methodology for the existing and proposed development.

5.2 Existing development

5.2.1 It is noted that the existing development provides approximately 12,763m² GIA of class E office space and attracts servicing trips already. A servicing activity survey was undertaken at King's Head Yard, White Hart Yard, St Thomas Street and Borough High Street in the vicinity of New City Court on 7th July (Thursday), 8th July (Friday) and 9th July 2016 (Saturday). The survey also recorded traffic flows and vehicle classification on the above roads. Since the survey was undertaken there have been no major changes in the operation of the building and the results continue to be representative. A summary of the results is set out in Table 5.1 below.

Time	LGV	HGV	M/C	Total
05:00 - 06:00	1	1	0	2
09:00 - 10:00	0	0	2	2
12:00 - 13:00	1	0	0	1
13:00 - 14:00	1	0	0	1
14:00 - 15:00	0	1	0	1
15:00 - 16:00	2	0	0	2
Total daily	5	2	2	9

Table 5.1 – Existing site servicing (no. of vehicles)

5.2.2 The survey found that servicing to the existing development takes place from St Thomas Street. Of the total number of vehicles, 4 Light Goods Vehicles (LGVs) were recorded within the on-street loading bay with the remainder of the vehicles stopping within the on-street pay & display bays.

5.3 Proposed Development – servicing vehicle trip methodology

5.3.1 Following comments received from the London Borough of Southwark and TfL all deliveries are subject to a proposed servicing consolidation strategy. Building on the initial research into consolidation by TPP, the evolving strategy has been developed in consultation with a specialist logistics company, Davies & Robson (D&R) who have developed bespoke consolidation strategies for other sites,

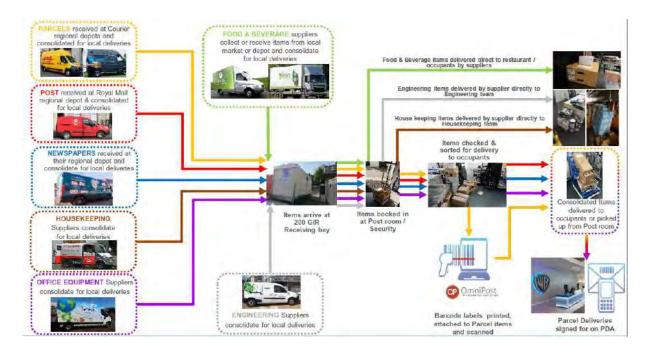
including Guy's and St Thomas's Hospital adjacent to New City Court. The consolidation strategy now being advanced for New City Court allows for a significant reduction in vehicle numbers, thus minimising impacts on the local road network and reducing potential conflicts with pedestrians and cyclists.

- 5.3.2 A key aspect of the strategy will be utilisation of an off-site consolidation centre where individual deliveries that are identified for consolidation will be stored, consolidated and then transported to the site. The strategy has been based on D&Rs extensive experience and is underpinned by empirical data sourced through a comprehensive servicing survey at a comparable existing GPE office at 200 Gray's Inn Road.
- 5.3.3 It has been shown that there is a considerable potential to consolidate office deliveries, as the majority of items are non-perishable and non-urgent items. Overall, it has been demonstrated that there is potential to reduce the number of office deliveries by 62%. Deliveries to the retail element of NCC are unlikely to be as suitable for consolidation given that this space will include restaurant/café uses relying on daily deliveries of fresh produce, and due to the disparate nature of the retail units being occupied by individual tenants. The proposed strategy has therefore been based on a realistic and honest approach in terms of consolidation potential, and the expected level of vehicle reduction.
- 5.3.4 The proposed strategy will significantly reduce vehicle movements and minimise vehicle emissions, and the resulting impacts on the local road network is negligible.
- 5.3.5 The strategy has been developed based on a quantitative approach in consultation with highly experienced logistics experts providing a high level of confidence in the proposed consolidation opportunities and represents a tangible and deliverable strategy for New City Court.

Consolidation potential based on D&R assessment

- 5.3.6 The D&R study has provided an up-to-date baseline for the servicing assessment. This utilises empirical and up to date data, robustly sought and subsequently comprehensively scrutinised and adjusted by TPP.
- 5.3.7 Whilst this does provide an updated baseline against which to measure any potential reductions in servicing loads, the principle purpose of the D&R study is

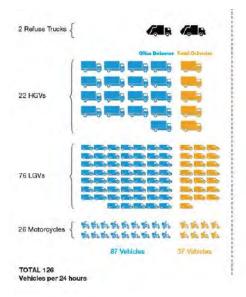
to use their logistics expertise, and real world data, to identify the consolidation potential for NCC, and the associated reduction in vehicle numbers. This study sets out in detail how deliveries to the office development at New City Court can be consolidated. The recommendations set out in the D&R study are evidencedbased and therefore represent a tangible and deliverable strategy.


- 5.3.8 As a starting point to its study, D&R undertook a comprehensive survey at GIR categorising deliveries into different types to understand their suitability for consolidation.
- 5.3.9 Table 5.2 summarises the various groups and whether they are considered suitable for consolidation.

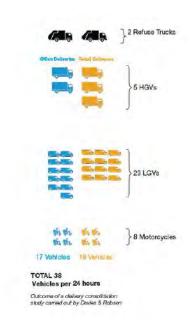
Item	Suitable?	Comment
Parcels and couriers	Yes	Including personal deliveries
Post	No	Urgent deliveries
Food and beverage	Limited	Fresh food not consolidated but potential for water towers and ambient vending machines
Engineering deliveries for building repairs and maintenance	Yes	Typically non-urgent
Housekeeping. Cleaning and washroom items	Yes	Not time critical
Newspapers and magazines	No	Time/Date specific
Office equipment, stationary.	Yes	Not time critical

Table 5.2 – Delivery types and consolidation suitability

5.3.10 The assessment demonstrates many delivery groups are suitable for consolidation, this includes parcels and courier deliveries which according to D&R make up over 50% of all deliveries. The flow diagram below shows the process for how the consolidation would work for different elements.



5.4 Calculated servicing trip generation


5.4.1 An initial assessment for this development suggested it would produce 126 vehicle deliveries per day as set out below. Following the consolidation exercise this is expected to reduce by 70% to only 38 vehicles a day.

Without consolidation

70% vehicle reduction (88 vehicles removed) in service vehicles servicing the site per day (in comparison to the planning submission).

With consolidation

30973/D30b July 2021

5.5 Timing of deliveries

- 5.5.1 As well as reducing the number of deliveries the proposed consolidation also allows for the deliveries to be scheduled outside of the peak pedestrian periods. This means there will be no deliveries between:
 - 07.00 -10.00
 - 12.00 14.00
 - 16.00 19.00
- 5.5.2 The deliveries will be spread out across the remainder of the day (and overnight) with a maximum of six deliveries an hour. These can be accommodated using the proposed two service bays.

6 IMPACT OF SERVICING TRIPS

- 6.1.1 Due to the proposed consolidation the number of daily deliveries is expected to increase modestly over the existing situation. However the benefits of a dedicated service bay which will be managed and controlled, opposed to the existing situation with vehicles stopping on St Thomas Street, will more than offset the expected daily increase in vehicles.
- 6.1.2 The management of the delivery timeslots, removing deliveries during the busiest peak pedestrian periods, also offers great benefits over the existing situation where there is currently conflict between pedestrians and servicing.
- 6.1.3 In light of this the proposed servicing offers an improvement over the existing situation and will have a positive impact on both peak hour congestion and pedestrian safety.

7 VEHICLE ROUTES

7.1.1 Vehicles will be encouraged to use the strategic road network to access the site where to minimise the impact on more residential roads as well as minimise potential conflicts in areas with higher pedestrian and cyclist flows.

7.2 St Thomas Street

- 7.2.1 With regard to delivery and servicing routes along St Thomas Street, two scenarios are presented:
 - A scenario in which St Thomas Street is entirely a one-way road (with westbound movement); and
 - A scenario in which it is predominantly one-way westbound, but with a two-way section between the junction with Borough High Street and the Shard.
- 7.2.2 If a third option for the reversal of the direction of flow on St Thomas Street is progressed by TfL the routeing will essentially be a reversal of the first option, with similar impacts albeit in the opposite direction.

7.3 Access / Egress to / from St Thomas Street, one-way system Vehicle routeing

From the north

- 7.3.1 HGV vehicles approaching from the north would be required to drive southbound on Tower Bridge Road and access St Thomas Street via Tooley Street, Tanner Street, Druid Street and Crucifix Lane. Alternatively, vehicles can travel southbound on London Bridge, perform a left-turn onto Duke St Hill / Tooley Street and access St Thomas Street via Tanner Street, Druid Street and Crucifix Lane.
- 7.3.2 When leaving, vehicles would be required to perform a left-turn from St Thomas Street onto Borough High Street (southbound) and drive on Marshalsea Road / Southwark Bridge Road to access Southwark Bridge northbound.

<u>From the south</u>

- 7.3.3 HGVs approaching the site from the south are expected to drive northbound on Borough High Street and perform a right-turn onto Long Lane before accessing St Thomas Street from Bermondsey Street, Tower Bridge Road, Druid Street and Crucifix Lane.
- 7.3.4 When leaving the site, vehicles would perform a left-turn from St Thomas Street onto Borough High Street and drive southbound.

<u>From the east</u>

- 7.3.5 HGVs approaching the site from the east are expected to approach from Druid Street / Crucifx Lane and access St Thomas Street by driving westbound.
- 7.3.6 When leaving the site, HGVs would perform a left-turn from St Thomas Street onto Borough High Street, drive southbound and turn left (towards east) onto Long Lane and drive eastbound.

<u>From the west</u>

- 7.3.7 HGVs approaching the site from the west are expected to drive through Southwark Street, Southwark Bridge Road, Marshalsea Road, Long Lane, Bermondsey Street, Tower Bridge Road, Druid Street and Crucifix Lane before accessing St Thomas Street.
- 7.3.8 When leaving the site, vehicles would perform a left-turn from St Thomas Street onto Borough High Street, access Southwark Street and drive westbound.

7.4 Access / Egress to / from St Thomas Street, two-way at western end

Vehicle routeing

From the north

- 7.4.1 HGV vehicles approaching from the north would drive southbound on London Bridge and Borough High Street and perform a left-turn onto St Thomas Street.
- 7.4.2 When leaving, HGVs would be required to perform a left-turn from St Thomas Street onto Borough High Street (southbound) and drive on Marshalsea Road / Southwark Bridge Road to access Southwark Bridge northbound.

<u>From the south</u>

- 7.4.3 HGVs approaching the site from the south would drive northbound on Borough High Street and perform a right-turn onto St Thomas Street.
- 7.4.4 When leaving the site, vehicles would perform a left-turn from St Thomas Street onto Borough High Street and drive southbound.

From the east

- 7.4.5 HGVs approaching the site from the east are expected to approach from Druid Street / Crucifx Lane and access St Thomas Street by driving westbound.
- 7.4.6 When leaving the site, HGVs would perform a left-turn from St Thomas Street onto Borough High Street, drive southbound and turn left (towards east) onto Long Lane and drive eastbound.

From the west

- 7.4.7 HGVs approaching the site from the west are expected to drive through Southwark Street and Borough High Street before preforming a right-turn onto St Thomas Street.
- 7.4.8 When leaving the site, vehicles would perform a left-turn from St Thomas Street onto Borough High Street, access Southwark Street and drive westbound.
- 7.4.9 The proposed vehicle routes are shown in Appendix x and will be communicated to all delivery drivers and route plans will be displayed in the loading area.

8 WASTE STRATEGY

8.1 Introduction

8.1.1 This chapter sets out the waste strategy for the proposed development.

8.2 Waste storage

- 8.2.1 The proposed arrangement is for waste to be stored at basement level 2, under the Tower, which will contain 16 x 1,280l Eurobins. The bin store is located next to the goods lift to provide easy access. Separate containers will be provided for general and recyclable waste. Additionally, a cardboard baler will be provided in the basement refuse store given that cardboard/paper is expected to make up a large proportion of waste being generated. Waste calculations setting out the expected volume of waste per waste stream and the resultant bin requirement is provided in Appendix C. These demonstrate a requirement for 13 x 1,280l Eurobins. In addition smaller sized bins will be provided for the storage of food waste from both the office and the commercial units.
- 8.2.2 The layouts of the bin store and collection facilities are flexible and will allow the number and type of bins to be altered to meet the development's requirements. As there is currently an over provision of bins there is already spare capacity incorporated into the design.
- 8.2.3 The above calculations are based on 70% of waste being recycled. The developer does not have control over the quantum of recycling undertaken by the end user, but the proposed arrangements will encourage the tenants to meet or exceed the municipal waste recycling target of 65% by 2030. This will be reviewed and enforced where possible as part of the waste monitoring.
- 8.2.4 A waste holding area is provided within the service area to allow easy loading into the refuse vehicle.
- 8.2.5 The relevant set of bins will be brought to the ground level waste store from the basement via a goods lift by the site management.

8.3 Waste Minimisation

8.3.1 The waste generated will be managed in accordance with the waste hierarchy, and in order to reduce the amount of waste generated, further specialist recycling activity will be encouraged on an ad hoc basis. This will include printer

cartridge and electronics recycling through recognised recycling schemes. Reusable items will be offered within the office community, or through site management links to local community groups/furniture projects/charities etc. to minimise unnecessary items being transported to landfill.

8.4 Monitoring of Commercial Waste

- 8.4.1 The quantities of waste and recyclables will be monitored on a monthly basis by the contracted waste specialist, and the results collated by site management. Should there be any undue increase in the level of waste produced, this will be investigated where necessary to identify any specific cause and implement measures to minimise waste.
- 8.4.2 Appropriate signage will be placed adjacent to the recycling and waste receptacles within the offices to encourage correct segregation of recyclables and organic waste in order to minimise general waste as far as possible.

8.5 Waste collection

8.5.1 It is proposed that waste will be collected from the service area accessed from St Thomas Street. Once emptied, the bins will be transported back to the basement by the site management. Waste would be collected daily for general and recyclable waste.

9 DELIVERY AND SERVICING PLAN MEASURES

9.1 Introduction

- 9.1.1 This chapter outlines the proposed measures and initiatives which will be implemented to achieve a sustainable and well managed development with regard to deliveries and servicing, with minimal disruption to the local highway network.
- 9.1.2 The measures and initiatives have been grouped into the following areas:
 - Site Management;
 - Design;
 - Procurement Strategy; and
 - Waste Management.

9.2 Site Management

- 9.2.1 The successful operation of the servicing area will require careful management from the facilities management team. The proposed management measures are set out below.
 - Deliveries via a consolidation centre: All deliveries will, where possible, be diverted to the off-site consolidation centre, where they will be received, consolidated and then brought to the office in a dedicated electric vehicle.
 - Centralised pre-booking system: All regular deliveries, including the consolidation vehicles will pre-book a timeslot in advance of arriving. No slots will be offered during the peak pedestrian periods to minimise impact on the public highway. This will also help to manage the capacity of the loading facilities available.
 - Night-time servicing: Given that the proposed development will have management presence 24 hours, a proportion of deliveries will be scheduled to take place overnight (between 12am - 5am). This further reduces the number of deliveries during the key time periods including during the peak hours.

- Communication of delivery procedures Freight operators can contact the site management prior to arriving at the site so that they can discuss access arrangements if required and any procedures they should undertake to deliver goods and services the site safely and efficiently.
- Accommodating special deliveries Any special deliveries to the site, will need to be pre-arranged and discussed with the site management team. The delivery time and duration will be negotiated with the development management to minimise the impact upon the routine daily servicing requirements of the development.
- Staff and training All staff who may be assisting in the loading area will receive appropriate training related to the delivery and servicing processes and procedures in operation on the site. There should be additional staff available to receive larger deliveries to minimise vehicle loading time.
- Security measures Vehicles accessing, manoeuvring and egressing the site will be monitored by the site management team and to ensure that deliveries and servicing are being undertaken in a safe and secure manner.
- Personal deliveries Personal deliveries to the building will not be permitted. This policy will be written into building tenants' leases and this will be communicated to all staff.

9.3 Design

Abnormal deliveries

9.3.1 Any abnormal deliveries would need to be specifically assessed for appropriate means of accessing the site and any essential temporary mitigation that may be required to cater for the weight or size of the vehicle / load. These would be treated as exceptional circumstances.

Risk assessment of servicing area

- 9.3.2 A risk assessment would be normally undertaken by suitably trained site management staff prior to use. This assessment will examine the following issues.
 - Adequate manoeuvring space for the vehicles;
 - Interaction with pedestrians;
 - Adequate unloading area;
 - Level route from vehicle to destination; and
 - Interaction with vehicles.

Traffic Management Regulation Audit

- 9.3.3 An audit of the local traffic management regulations on the road network surrounding the site was undertaken in November 2020, based upon site observations and Traffic Management Regulations.
- 9.3.4 The main restrictions that may affect goods vehicle movements in the wider area are summarised below:

Height Restrictions

- 3.9m on Stainer Street to the north.
- 5.2m on Bermondsey Street.
- 5.4m Borough High Street.
- 4.4m through Rotherhithe Tunnel.

Weight Restrictions

- Max 18 tonnes at Tower Bridge.
- Max 17 tonnes at Rotherhithe Tunnel.

Width Restrictions

- 2.2m through Rotherhithe Tunnel.
- 9.3.5 Further information can be obtained across the road network, including more minor routes using the London Lorry Control network website

30973/D30b July 2021

(<u>www.londonlorrycontrol.com</u>) and Freight Journey Planner (<u>http://www.freightjourneyplanner.co.uk/</u>).

9.4 **Procurement strategy**

9.4.1 As part of procurement process for deliveries to the site, an awareness of all vehicle activity associated with the site, its impacts and appropriate measures to reduce it should be taken into account.

Consolidation of Suppliers

9.4.2 The opportunities to consolidate deliveries will be reviewed with suppliers by the site management team on a regular basis.

Freight Operator Recognition Scheme

9.4.3 The site management will be encouraged to contract suppliers registered with a best practice scheme, such as the Freight Operator Recognition Scheme (FORS). Full details of the benefits associated with FORS can be found at www.tfl.gov.uk/fors.

Low Emission / EV Goods Vehicles

9.4.4 Suppliers of goods to the site will be encouraged to use Low Emission / Electric Vehicles to deliver to the site.

9.5 Waste management

- 9.5.1 On refuse collection days, refuse collection will be undertaken as set out in Chapter 8 of this report.
- 9.5.2 Refuse collection will be undertaken early in the morning, outside of the peak hours.

10 MONITORING AND ENFORCEMENT

10.1 Introduction

10.1.1 It will be important to understand how the servicing area is being operated and any issues that may arise. This chapter sets out the surveys proposed to monitor the use and identify any possible improvements.

10.2 Monitoring surveys

- 10.2.1 It is proposed that monitoring surveys will be undertaken on a periodic basis. The first delivery survey audit will be undertaken a maximum of 6 months after the development is occupied. The site management team (or appointed consultant) will undertake delivery monitoring surveys on the third and fifth year after the initial survey.
- 10.2.2 The surveys should provide data such as the number of vehicles, dwell times, vehicle size, and where possible, the type of goods being delivered and the frequency of this delivery.

10.3 Review

- 10.3.1 The site management will use the results of the surveys to identify particular trends such as a number of different companies deliver similar products. The results will then help the development management to look for 'quick wins'.
- 10.3.2 This process will provide the opportunity for current delivery operations and procedures on the site at the time to be reviewed and new management measures to be implemented (if necessary) to achieve the objectives set out within Chapter 3.

10.4 Enforcement

10.4.1 The contents of this outline DSMP have been prepared in order to inform the planning authority of the developer's intent for the planning application for this site. Therefore it must be complied with unless otherwise agreed in writing with the planning authority.

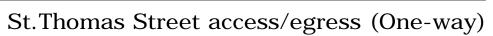
Appendix A

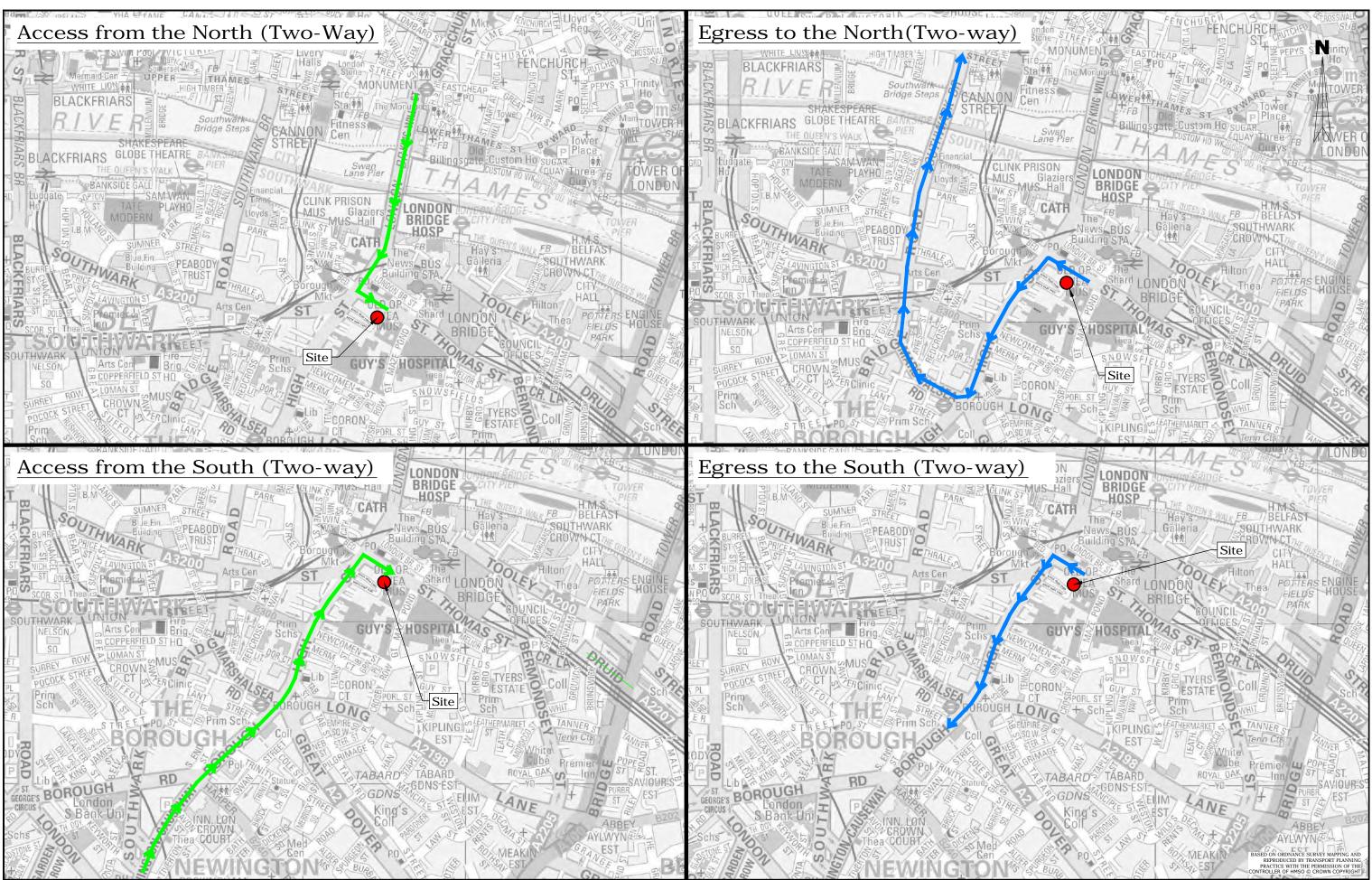
Swept path analysis of service vehicles

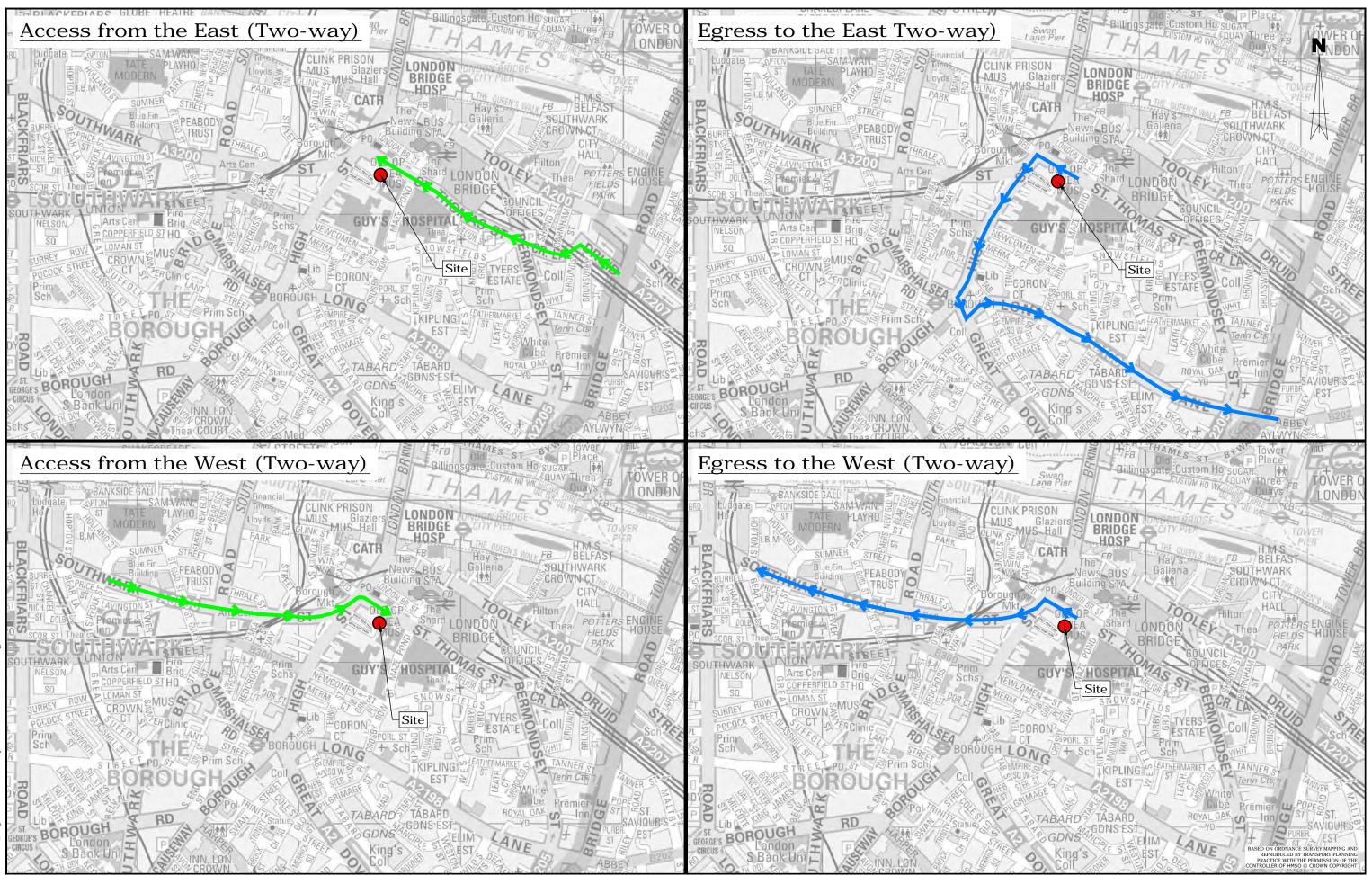
REVCOMMENTS	DR CH	DATE
NOTES		
N	1	
•		
	T	
	\bigwedge , \checkmark	
DRAWN BY	CHECKED	
LD/LB	REV	,
SCALE @ A1 1:250 0 5 10m	DATE 20/26/2	021
	20/20/2	
NEW CIT	Y COUR ⁻	Г
Swept path	analycic	of
service	z yaiù	
TRANSPORT PLAN	INING PR	ACTICE
70 Cowcross Street		
London, EC1M 6EL		TDD
t: 020 7608 0008 w: www.tppweb.co.uk	transpor	planning practice
DRAWING NUMBER	/076	REV
500+0/AC	, 0 / 0	

Appendix B

Vehicle routeing plans




St. Thomas Street access/egress (One-way)

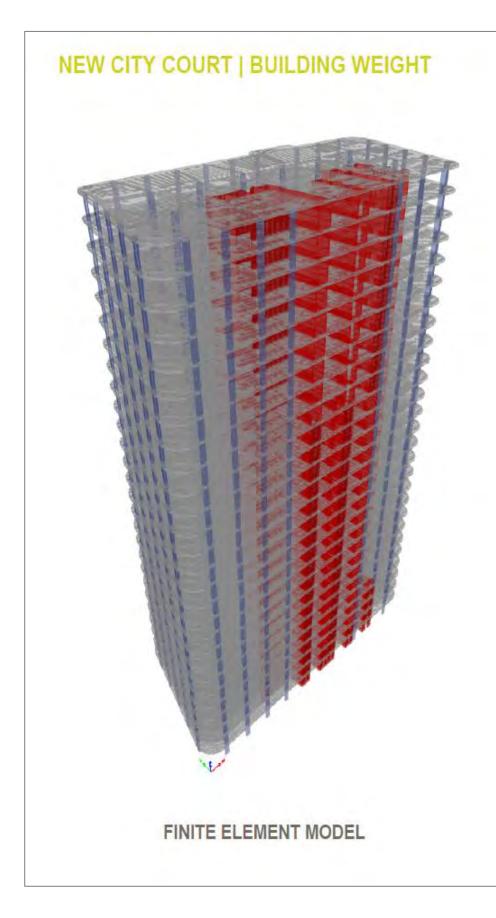

Figure 4

St. Thomas Street access/egress (Two-way)

St. Thomas Street access/egress (Two-way)

Appendix C

Waste generation calculations


New City Court - Waste Generation and Storage Requirements - Option 1: 1,280 litre Eurobins and 30/70 split between general and recyclable waste + compaction of cardboard for Office Use

Land Use	GEA (m2)	Total Waste storage requirements (weekly)				
Class E Office	52962	2000	litres	per	1000	m2 GFA
Class E Retail	358	4000	litres	per	1000	m2 GFA
Class E Food and drink	450	3500	litres	per	1000	m2 GFA

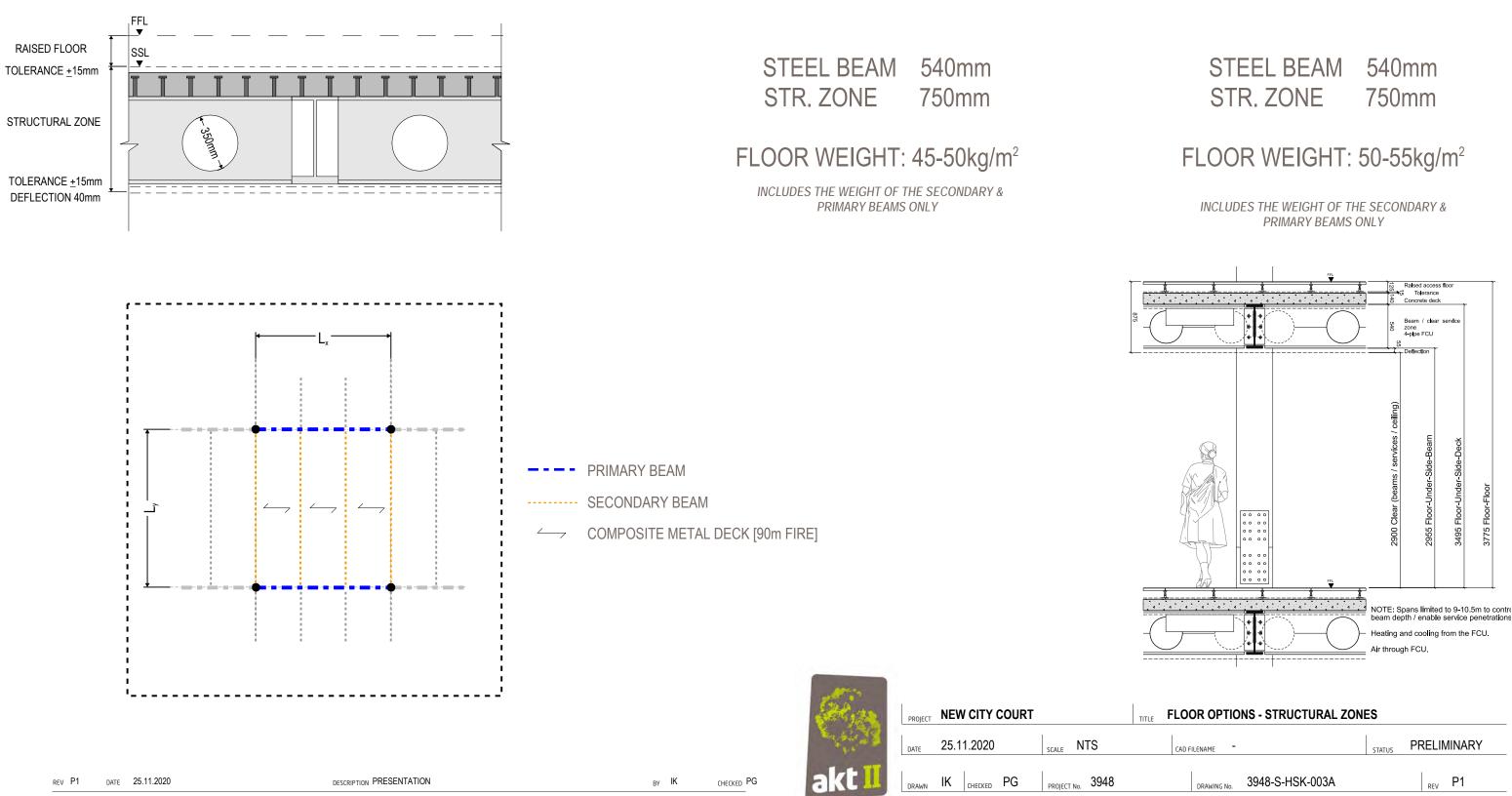
Based on Westminster City Council 'Recycling and Waste Storage Requirements' document (2017-2018)

	Total Weekly Storage		Requirement (litres) collections a week	, based on 5		e Requirement (I based on 5 colle	lo. of 1,280 litre ctions a week		Bin Type	1280 litre		
Land Use	Requirement (litres)	Total Waste Storage Requirement (litres)	General Waste Storage Requirement (litres)	Recyclable Waste Storage Requirement (litres)	Total Waste Storage Requirement (litres)	General Waste Storage Requirement (litres)	Recyclable Waste Storage Requirement (litres)	Cardboard to account for 50% of recyclable waste				
Class E Office	105924	21185	6355	14829	11	5	6	Compacted into Bales and collected	d separately	Split of total waste		
Class E Retail	1432	286	86	200						30% general		
Class E Food and drink	1575	315	95	221	Cor	mbined Provision as	s below			70% recycable		
Non-Office Uses	3007	601	180	421								
D2	Assessed on its own	merit in the context of type of of us	of the small amount of t se proposed	floorspace and the	2	1	1					Waste Reduction
	Total			included wi	thin Non-Office Pro	vision as above			Cardboard Baler for	Office Use	50%	
					13	6	7					

Assumes 50% of recyclable office waste would be cardboard which could be compacted into bales and collected separately. This reduces the recyclable Eurobins by half.

SOFTWARE OUTPUT DEAD LOAD: 70,000 TONNES

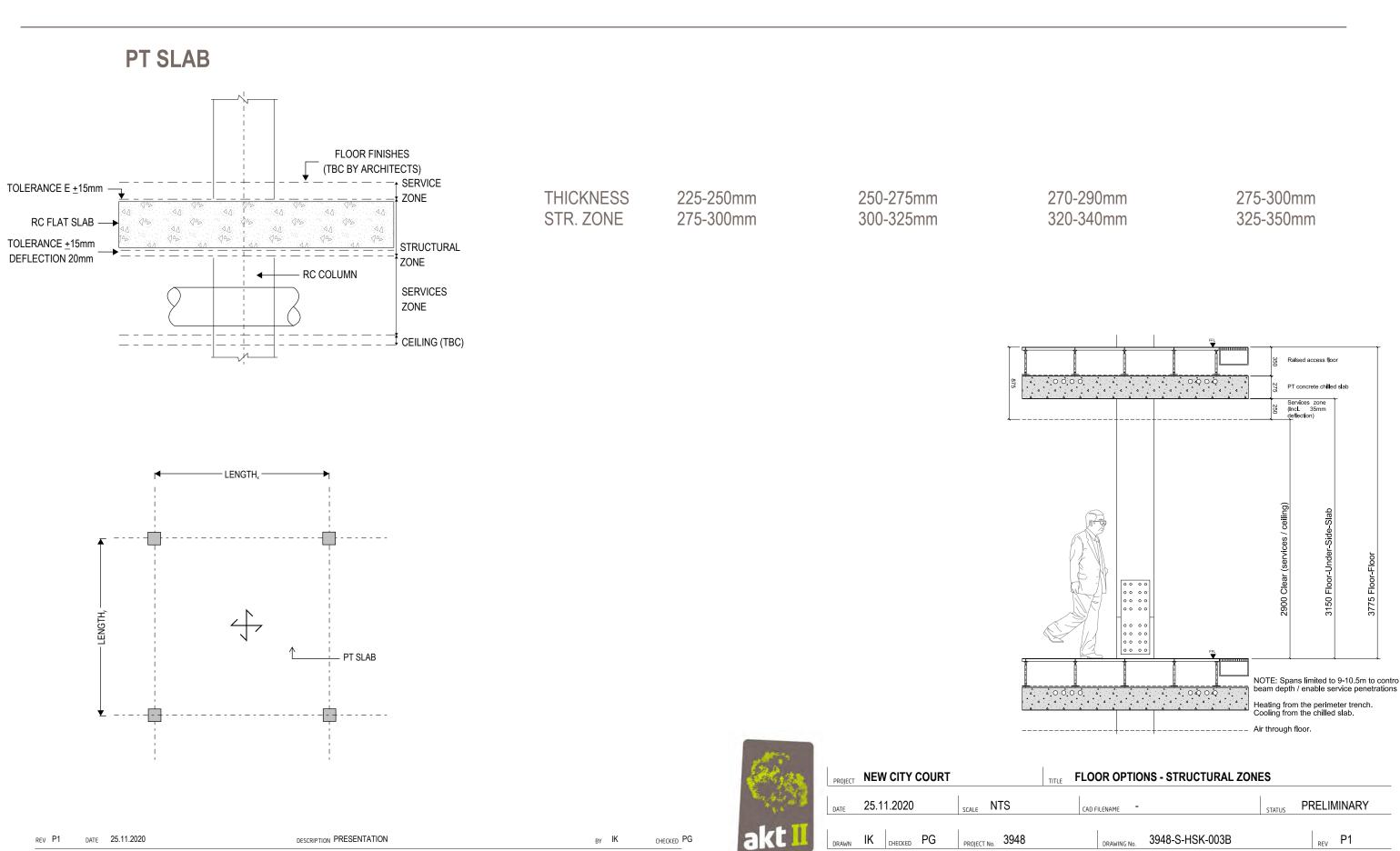
NOTE: THIS VALUE DOES NOT INCLUDE FOUNDATIONS



6.8 Appendix 8 - Lean design options appraisal

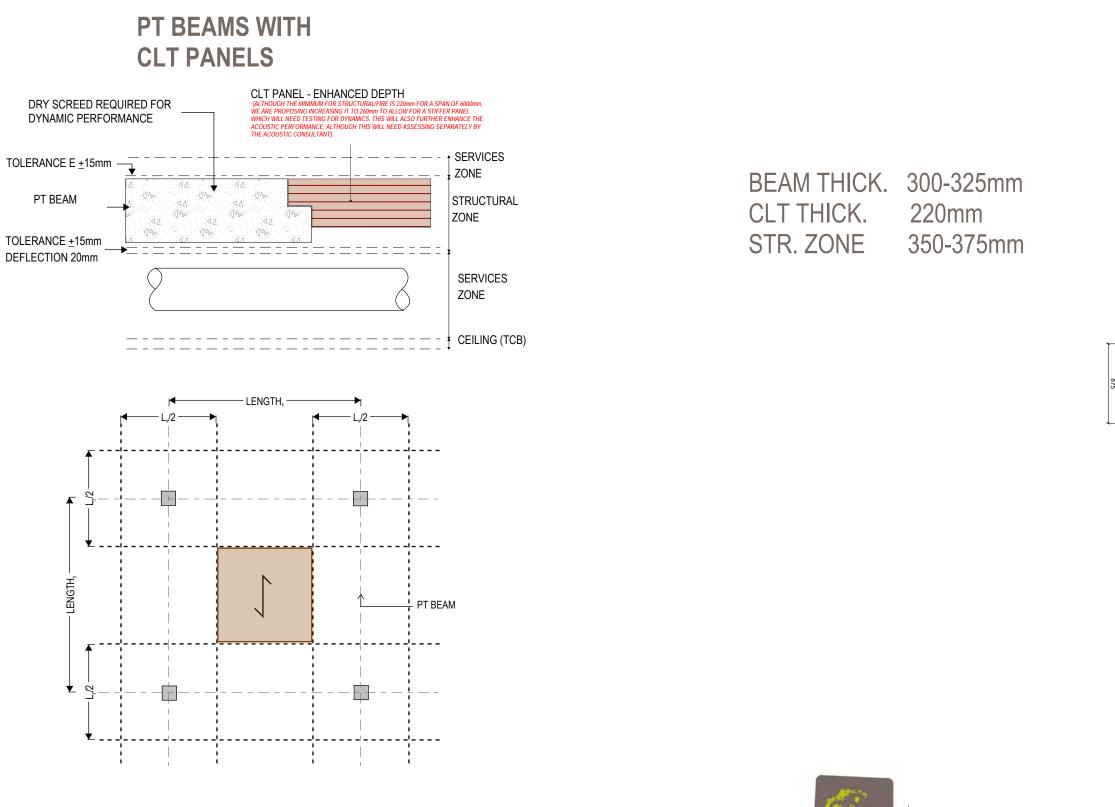
FLOOR OPTION / STRUCTURAL GRID

9.00 x 9.00m


COMPOSITE SLAB ON STEEL BEAMS

CAD FILE	NAME -	STATUS	PRELIMINARY
	JRAWING №. 3948-S-HSK-003A		_{REV} P1

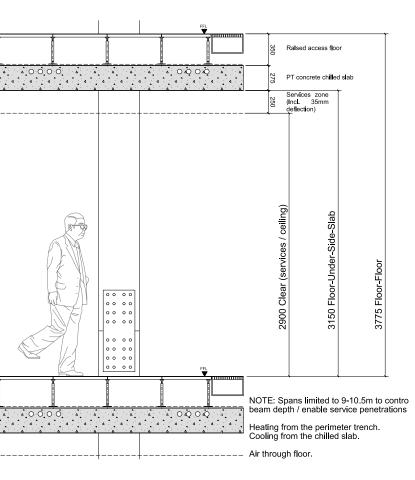
FLOOR OPTION / STRUCTURAL GRID


9.00 x 7.50m 9.00 x 9.00m

CAD F	ILENAME -		STATUS	PRELIMINARY
	DRAWING No.	3948-S-HSK-003B		_{REV} P1

FLOOR OPTION / STRUCTURAL GRID

9.00 x 9.00m


REV P1 DATE 25.11.2020

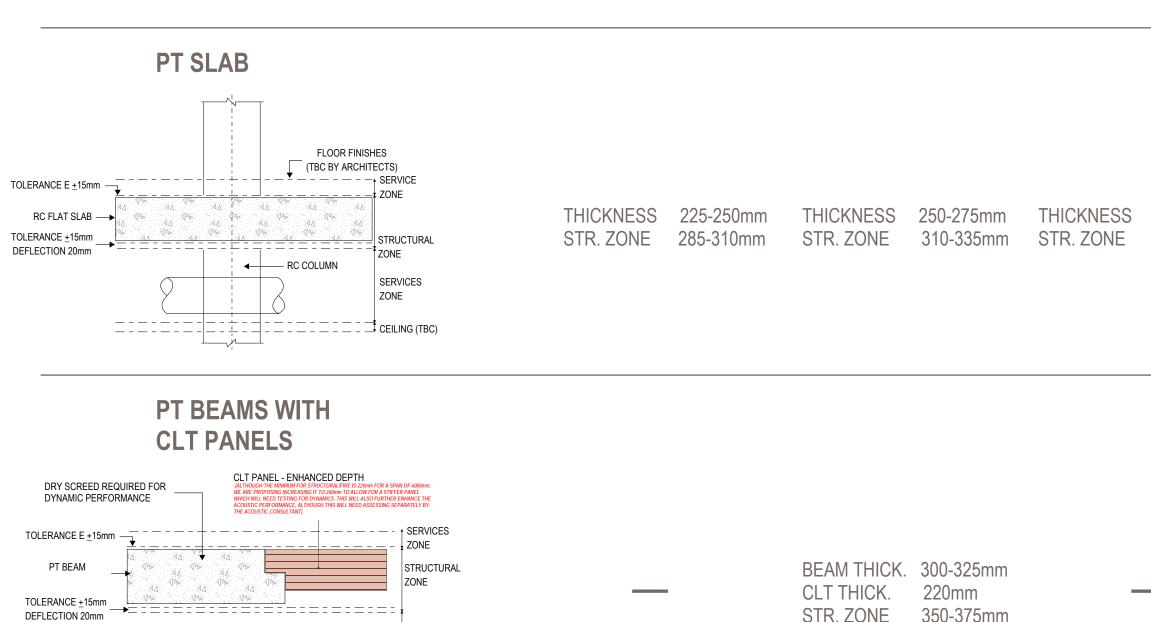
DESCRIPTION PRESENTATION

CHECKED PG

% 4 .	PROJECT	PROJECT NEW CITY COURT					
23	DATE	25.11.2020	SCALE NTS				
1	DRAWN	IK CHECKED PG	PROJECT No. 3948				

BEAM THICK.325-350mmCLT THICK.260mmSTR. ZONE375-400mm

FLOOR OPTIONS - STRUCTURAL ZONES


CAD FILENAME		STATUS	PRELIMINARY
DRAWING No.	3948-S-HSK-003C		_{REV} P1

FLOOR OPTION / STRUCTURAL GRID

9.00 x 7.50m

9.00 x 9.00m

10.50 x 7.50m

11.		
A COLOR	PROJECT NEW CITY COURT	TITLE
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	DATE 25.11.2020 SCAL	ε NTS
akt I	DRAWN IK CHECKED PG PRO	JECT NO. 3948

DEFLECTION 20mm

DESCRIPTION PRESENTATION

SERVICES ZONE

CEILING (TCB)

275-300mm 335-360mm

THICKNESS STR. ZONE

275-300mm 335-360mm

BEAM THICK. 325-350mm 260mm CLT THICK. 375-400mm STR. ZONE

FLOOR OPTIONS - STRUCTURAL ZONES

CAD FILENAME		STATUS	PRELIMINARY
DRAWING No.	3948-S-HSK-003D		_{REV} P1

6.9 Appendix 9 – Soft spots assessment

10 New City Court

10.1 Introduction

This is the main building of the proposed development. It is a 26-storey building (with mezzanine and two basement levels), extending to 108m AOD.

The proposed structural solution for the tower is a reinforced concrete frame with PT slabs typically 275mm thick.

The atypical office floor levels (LoM to Lo3 included). The main characteristic of these floors is the wedge slab at the southeast side of the Site, the gallery slabs and the cantilever core circulation slab.

The typical office floor layout starts from Level o4 and goes up to Level 24. The core layout/footprint changes slightly along the height of the building (Level 16 to roof).

Level 24 is where the main terrace is located and one more storey above this level is extending with a smaller footprint to host a restaurant, mechanical plants, cooling towers and a BMU.

The main stability system which provides resistance to the lateral loads i.e. wind loads for the tower is the reinforced concrete core which runs from the B2 Level to roof and is split into three parts namely; the Western part, the Central part and the Eastern part.

Different structural frame options have been also considered at this stage such as steel frame with metal deck however

the preferred option at the time of authoring this report is the reinforced concrete frame with PT slabs.

10.1.1 Typical Floors

The internal columns are typically located at a 9.50m x 10.50m grid and have a circular shape, while the perimeter columns are located at 6m distance along the facade and have a rectangular shape.

The thickness of the typical tower PT slab as mentioned before is equal to 275mm. Several iterations have taken place to derive a balance between an economical design in terms of tendons, loose reinforcement, slab thickness long term deflections and footfall response to human induced vibrations.

.....

Soft Spots

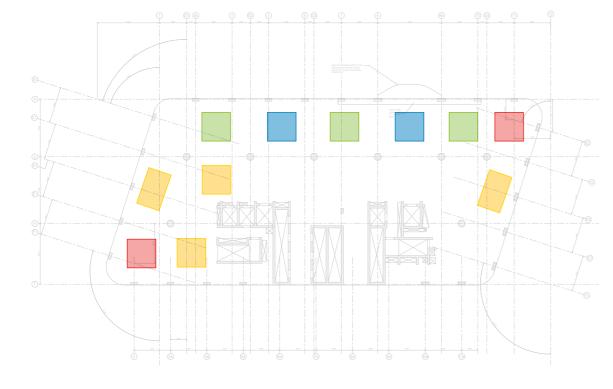
The future tenants' flexibility has been considered in the typical tower PT slab design. Different options with soft spots on the floor plate have been assessed and designed respectively and infill options for each one of these cases have been provided depending on the soft spot required dimensions. At the time of authoring this report the soft spot locations that appear to be more preferred are:

- •• one soft spot between grid lines A-G2 and G-G3, (bay in the north-east side of the floor plate)
- •• one soft spot between grid lines A-8 and G-9B (the bay opposite to the balcony)

Please note that a traffic light system for the different soft spot locations can be found to the relevant appendix attached to this report.

10.1.2 Lower Floors

From the Ground Floor Level up to Level o2, the floor plate area is reduced and a different perimeter columns' arrangement has been proposed closer to the Georgian Terraces which ensures not only a minimum impact to the existing buildings but also meets the criteria for the gallery space.


Level oo

The ground floor slab is a reinforced concrete slab which varies in terms of depth, levels and is also characterized by the number of steps along the different interfaces. The slab can be split into four different parts:

- •• slab following the tower's footprint which also provides direct support to the Levels o1 and o2 steel columns as well as the additional Level oM supports, 400mm thick
- •• slab that supports the landscape close next to the proposed new London Bridge Tube Station entracnce, 450mm thick
- •• loading bay slab, 400mm thick
- •• Keats House slab, 225mm thick (refer to the relevant section)

Level oM

With regards to the Level oM and the cantilever core circulation slab a different system has been adopted where the core slabs are becoming 300mm and supporting the thinner slab that spans between them. Additional columns (reinforced concrete or RHS steel sections) are provided to provide supports to the slab and to the beams along its perimeter. These columns are directly supported on the Level oo slab and are not continuing to the basement levels.

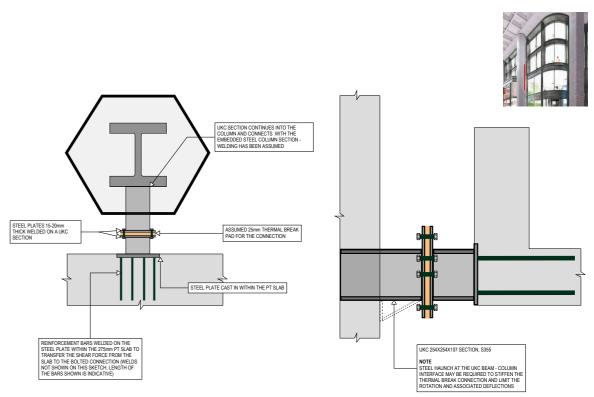


Figure 10.42 Typical PT office floor layout with the soft spots traffic light system (in blue the location of the soft-spots agreed at this stage)

LEVELS 01 & 02

Different options to support the slabs for Levels o1 and o2 have been proposed and designed respectively; vertical support provided by either the steel RHS sections placed at approximately 3m c/c along the perimeter of these slabs (preferred option) or through the use of hangers supported from Level 03. For all of these options the use of a 275mm PT slab has been adopted.

10.1.3 Top Floors

Level 24 is where the public terrace and the main restaurant area are located. The remaining floor plate is occupied by mechanical plants and cooling towers. The slab at this level is expected to be circa 450mm thick RC slab with the potential of adding columnheads within the build-up zone, to the internal columns that are supporting the landscape area due to the defflections and the magnitude of the punching shear forces.

Level 25 hosts the mezzanine level of the restaurant and is occupied for the remaining area mainly by mechanical plants and the BMU. Slabs at this level are expected to vary between 300mm and 350mm.

Please note that a steel frame structure will be also installed on top of the slab to support the metal decking roof on top (photovoltaic panels' areas).

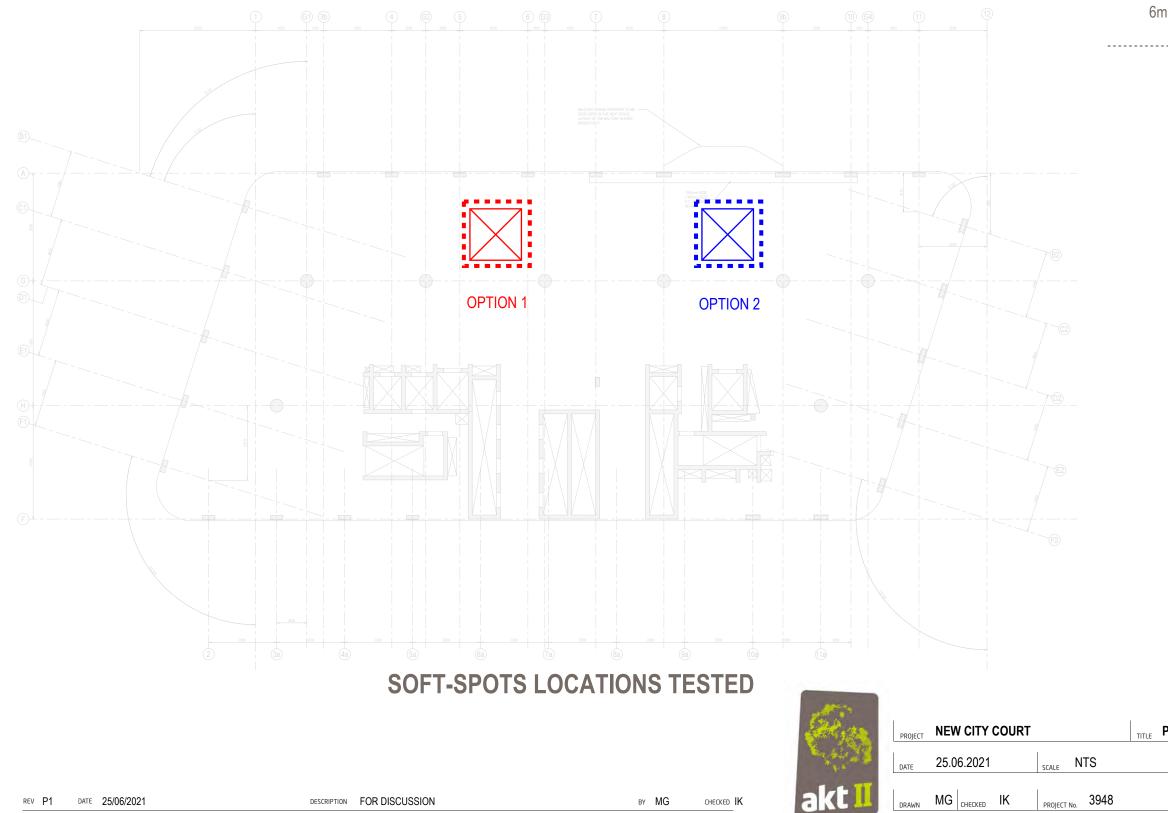
Level 26 is the top roof of the structure and it is occupied by the private tenant terrace on the northern side and by solar panels in the remaining area. The slab supporting a tenant terrace is expected to be circa 300mm thick RC slab, while the remaining roof is assumed to be supported by a steel frame and metal decking.

NEW CITY COURT | TYPICAL PT FLOOR SLAB - SOFT SPOTS LOCATION

I SLAB SOFT	SPOIS -	IRAFFIC	LIGHT	SYSTEM	

CAD	FILENAME		STATUS	FOR DI	SCUSSION
	DRAWING No.	3948-HSK-303		REV	P1

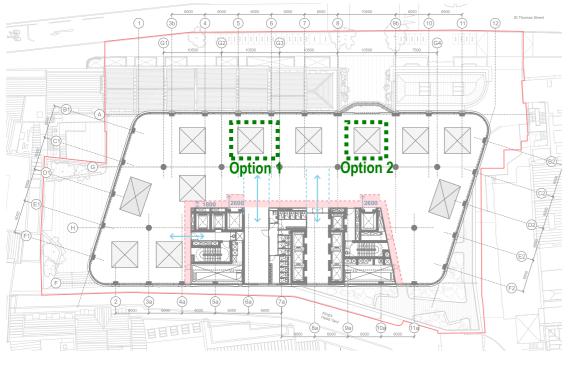
SOFT-SPOT LOCATION ACCEPTABLE


SOFT-SPOT LOCATION ACCEPTABLE -DIMENSIONS WILL NEED TO BE REDUCED /

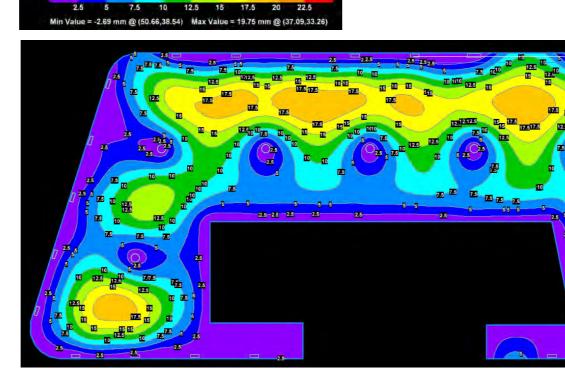
ADJUSTED

NEW CITY COURT | TYPICAL PT FLOOR SLAB - SOFT SPOTS INFILLS

OPTIONS 1 AND 2

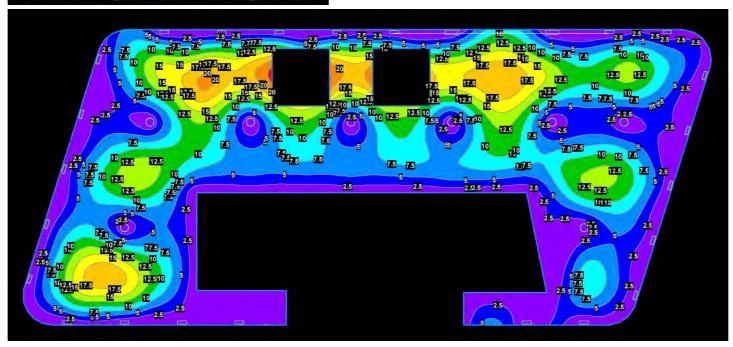


SOFT SPOT	RC / PRECAST	CLT
4m x 4m	175mm	170mm + 50mm SCREED
5m x 5m	200mm	230mm + 50mm SCREED
6m x 6m	200mm	260mm + 50mm SCREED

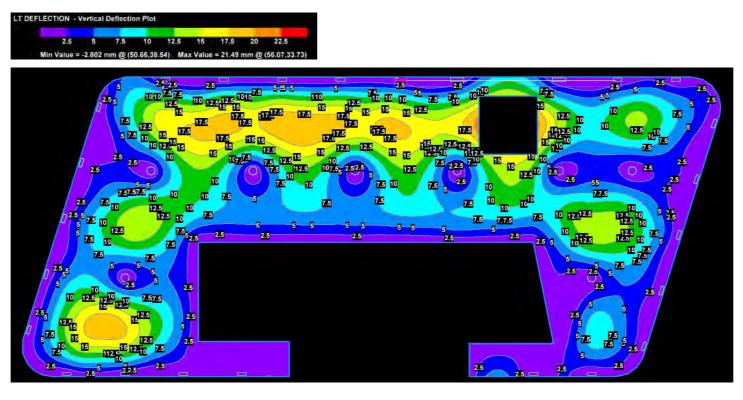

TITLE PT SLAB SOFT SPOTS - INFILLS

	CAD FILENAME	STATUS	FOR DISCUSSION
•	3948-HSK-308		PEV P1
	DRAWING No. 0040-1101(-000		REV

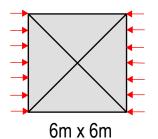
SOFT SPOTS & BALCONIES - LOADS ASSUMPTIONS PLAN WITH NO SOFT-SPOTS LT DEFLECTIONS AND DEFLECTIONS

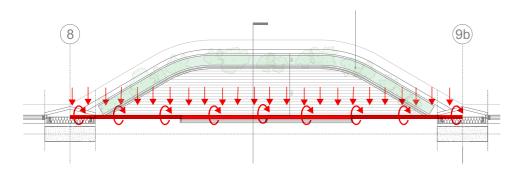


AHMM PROPOSED LOCATIONS



OPTION 1 - LT DEFLECTIONS


2,5 5 7,5 10 12,5 15 17,5 20 22,5 Min Value = -3,984 mm @ (38.66,38.53) Max Value = 23.61 mm @ (35.07,33.73)

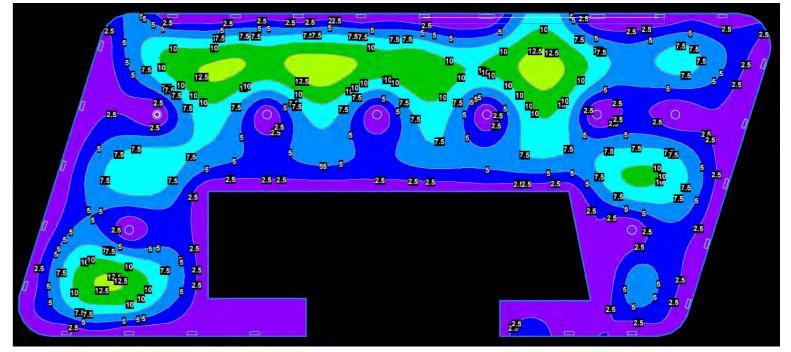


LOADS

ASSUMED 200mm THICK CONCRETE INFILL (WORST CASE SCENARIO ONE WAY SPANNING) SW = 0.2m x 3m x 25kN/m³ = 15kN/m SIDL = 1kPa x 3m = 3kN/m LL = 3.5kPa x 3 = 10.5kN/m

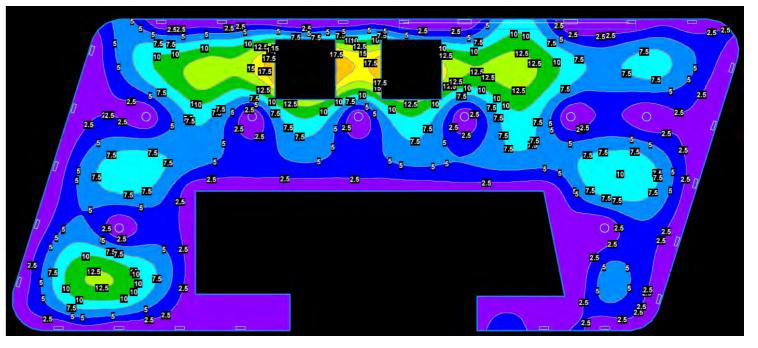
SIDL VERTICAL = 10kN/m SIDL MOMENT = 17.5kNm/m

IL VERTICAL = 5kN/m IL MOMENT = 9.2kNm/m

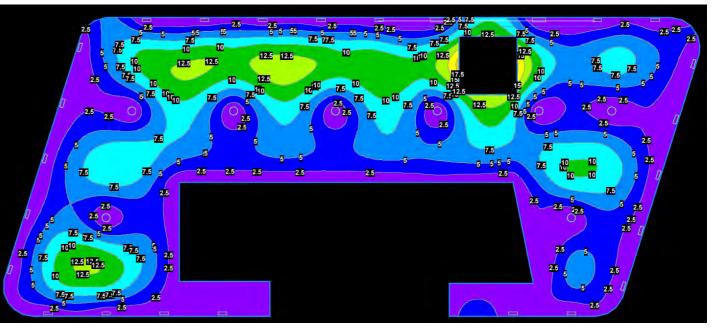

NOTE:

1. PLEASE REFER TO THE SOFT SPOT OPTIONS LOCATION SKETCH FOR MORE INFORMATION; 3948-HSK-303

2. THE EFFECT OF HAVING TWO SOFT SPOTS NEXT TO EACH OTHER AT THE NORTH BAY WAS ALSO EXAMINED TO ASSESS THE SLAB DEFLECTIONS AND ARE SHOWN IN THIS SKETCH


PLAN WITH NO SOFT-SPOTS POST FACADE INSTALLATION DEFLECTIONS

2.5 5 7.5 10 12.5 15 17.5 20 22.5 Min Value = -1.34 mm @ (50.66,38.54) Max Value = 13.74 mm @ (37.74,33.26)


OPTION 1 - POST FACADE INSTALLATION DEFLECTIONS

LT DEFLECTION - SW + PS) - Vertical Deflection Plot 2.5 5 7.5 10 12.5 15 17.5 20 22.5 Min Value = -1.854 mm @ (38.35,38.53) Max Value = 20.41 mm @ (41.07,33.57)

OPTION 2 - POST FACADE INSTALLATION DEFLECTIONS

EFLECTION - SW + PS) - Vertical Deflection Plot 2.5 5 7.5 10 12.5 15 17.5 20 22.5 Min Value = -1.617 mm @ (50.66,38.54) Max Value = 18.67 mm @ (56.07,33.2

PROJECT NEW CITY COURT			TITLE PT SLAB - BALCONY INTERFACE DEFLECTIONS		
DATE	25.06.2021	SCALE NTS	CAD FILENAME	STATUS PRELIMINARY	
DRAW	wn MG CHECKED IK	PROJECT No. 3948	DRAWING NO. 3948-HSK-302	_{rev} P1	