3.3 Aircraft noise

Recommendations

For average noise exposure, the GDG **strongly** recommends reducing noise levels produced by aircraft below **45 dB** L_{den} , as aircraft noise above this level is associated with adverse health effects.

For night noise exposure, the GDG **strongly** recommends reducing noise levels produced by aircraft during night time below **40 dB** L_{night} , as aircraft noise above this level is associated with adverse effects on sleep.

To reduce health effects, the GDG strongly recommends that policy-makers implement suitable measures to reduce noise exposure from aircraft in the population exposed to levels above the guideline values for average and night noise exposure. For specific interventions the GDG recommends implementing suitable changes in infrastructure.

3.3.1 Rationale for the guideline levels for aircraft noise

The exposure levels were derived in accordance with the prioritization process of critical health outcomes described in section 2.4.3. For each of the outcomes, the exposure level was identified by applying the benchmark, set as relevant risk increase to the corresponding ERF. In the case of exposure to aircraft noise, the process can be summarized as follows (Table 26).

Table 26. Average exposure levels (L_{den}) for priority health outcomes from aircraft noise

Summary of priority health outcome evidence	Benchmark level	Evidence quality
Incidence of IHD	5% increase of RR	Very low quality
A relevant risk increase from exposure to aircraft noise occurs at 52.6 dB L_{den} . The weighted average of the lowest noise levels measured in the studies was 47 dB L_{den} and the corresponding RR in the meta-analysis was 1.09 per 10 dB.		
Incidence of hypertension	10% increase of RR	Low quality
One study met the inclusion criteria. There was no significant increase of risk associated with increased noise exposure in this study.		
Prevalence of highly annoyed population	10% absolute risk	Moderate quality
There was an absolute risk of 10% at a noise exposure level of 45.4 dB $L_{\rm den}$		
Permanent hearing impairment	No increase	No studies met the inclusion criteria
Reading skills and oral comprehension in children	One-month delay	Moderate quality
A relevant risk increase was found at 55 dB L_{den} .		

such intervention measures do not involve any direct costs, although safety concerns may limit the feasibility of these strategies. Passive noise abatement measures like the installation of soundproof windows at the dwelling were also regarded as feasible and economically reasonable by the GDG, as these are implemented at several airports already. In relation to active abatement measures, the GDG acknowledged the "balanced approach" elaborated by International Civil Aviation Organization, which states that noise reduction should take place first at the source. As indicated by the Clean Sky Programme, this could, for example, entail shifting towards the introduction of new aircraft. This broad European research programme estimates that, depending on type, the shift to newly produced aircraft could lead to a reduction of approximately 55-79% of the area affected by aircraft noise, and consequently the population exposed. As this solution has been put forward by the aviation sector, it is considered feasible. Overall, this indicates that solutions to achieve recommended noise levels can be implemented and at reasonable costs. The GDG agreed that implementation of the recommendation to minimize the risk of adverse health effects due to aircraft noise for a majority of the population would require a reasonable amount of (monetary) resources. It noted, however, that the feasibility of implementing the measures could be hindered by the fact that costs and benefits are not equally distributed. In most cases, the health benefits citizens gain from interventions that reduce aircraft exposure are borne by private companies and public authorities.

In light of the assessment of the contextual factors in addition to the quality of evidence, the recommendation remains strong.

Other nonpriority adverse health outcomes

Although not a priority health outcome and coming from a single study, the GDG noted the evidence rated moderate quality for the statistically significant association between aircraft noise and the change in waist circumference (Eriksson et al., 2014). The range of noise levels in the study identified was 48 to 65 dB L_{den} , and therefore the recommendation would also be protective enough for this health outcome.

In the context of aircraft noise, when considering the impacts of exposure on cognitive impairment in children, these guideline recommendations also apply particularly to the school setting. Noise exposure at primary school and at home is often highly correlated; however, the evidence base considered comes mainly from studies designed around sampling at school and not residences.

Additional considerations or uncertainties

There is additional uncertainty when characterizing exposure using the acoustical description of aircraft noise by means of L_{den} or L_{night} . Use of these average noise indicators may limit the ability to observe associations between exposure to aircraft noise and some health outcomes (such as awakening reactions); as such, noise indicators based on the number of events (such as the frequency distribution of $L_{A,max}$) may be better suited. However, such indicators are not widely used.

The GDG acknowledged that the guideline recommendation for L_{night} may not be fully protective of health, as it implies that around 11% (95% CI: 4.72–17.81) of the population may be characterized as highly sleep-disturbed at the recommended L_{night} level. This is higher than the 3% absolute risk considered for setting the guideline level. However, the high calculation uncertainty in predicting noise levels lower than 40 dB prevented the GDG from recommending a lower level. Furthermore,